Site icon S. N. Bose Physics Learning Center

Linear Algebra and Formalism TIFR

Q.No:1 TIFR-2012

Two different \(2\times 2\) matrices \(A\) and \(B\) are found to have the same eigenvalues. It is then correct to state that \(A=SBS^{-1}\) where \(S\) can be a
(a) traceless \(2\times 2\) matrix
(b) Hermitian \(2\times 2\) matrix
(c) unitary \(2\times 2\) matrix
(d) arbitrary \(2\times 2\) matrix

Check Answer

Option c

Q.No:2 TIFR-2013

Consider a quantum mechanical system with three linear operators \(\hat{A}, \hat{B}\) and \(\hat{C}\), which are related by \[ \hat{A}\hat{B}-\hat{C}=\hat{I} \] where \(\hat{I}\) is the unit operator. If \(\hat{A}=d/dx\) and \(\hat{B}=x\), then \(\hat{C}\) must be
(a) zero
(b) \(\frac{d}{dx}\)
(c) \(-x\frac{d}{dx}\)
(d) \(x\frac{d}{dx}\)

Check Answer

Option d

Q.No:3 TIFR-2013

The state \(|\psi\rangle\) of a quantum mechanical system, in a certain basis, is represented by the column vector \[ |\psi\rangle= \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix} \] The operator \(\hat{A}\) corresponding to a dynamical variable \(A\), is given, in the same basis, by the matrix \[ \hat{A}= \begin{pmatrix} 1&1&1\\ 1&2&1\\ 1&1&2 \end{pmatrix} \] If, now, a measurement of the variable \(A\) is made on the system in the state \(|\psi\rangle\), the probability that the result will be \(+1\) is
(a) \(1/\sqrt{2}\)
(c) \(1\)
(b) \(1/2\)
(d) \(1/4\)

Check Answer

Option d

Q.No:4 TIFR-2014

The product \(\mathbf{M}\mathbf{N}\) of two Hermitian matrices \(\mathbf{M}\) and \(\mathbf{N}\) is anti-Hermitian. It follows that
(a) \(\{\mathbf{M}, \mathbf{N}\}=0\)
(b) \([\mathbf{M}, \mathbf{N}]=0\)
(c) \(\mathbf{M}^{\dagger}=\mathbf{N}\)
(d) \(\mathbf{M}^{\dagger}=\mathbf{N}^{-1}\)

Check Answer

Option a

Q.No:5 TIFR-2015

\(1000\) neutral spinless particles are confined in a one-dimensional box of length \(100 nm\). At a given instant of time, if \(100\) of these particle have energy \(4\epsilon_0\) and the remaining \(900\) have energy \(225\epsilon_0\), then the number of particles in the left half of the box will be approximately
(a) \(625\)
(b) \(500\)
(c) \(441\)
(d) \(100\)

Check Answer

Option b

Q.No:6 TIFR-2016

If the eigenvalues of a symmetric \(3\times 3\) matrix \(\mathbf{A}\) are \(0, 1, 3\) and the corresponding eigenvectors can be written as \[ \begin{pmatrix}1\\1\\1\end{pmatrix}, \begin{pmatrix}1\\0\\-1\end{pmatrix}, \begin{pmatrix}1\\-2\\1\end{pmatrix} \] respectively, then the matrix \(\mathbf{A}^4\) is
(a) \(\begin{pmatrix}41&-81&40\\-81&0&-81\\40&-81&41\end{pmatrix}\)
(b) \(\begin{pmatrix}-82&-81&79\\-81&81&-81\\79&-81&83\end{pmatrix}\)
(c) \(\begin{pmatrix}14&-27&13\\-27&54&-27\\13&-27&14\end{pmatrix}\)
(d) \(\begin{pmatrix}14&-13&27\\-13&54&-13\\27&-13&14\end{pmatrix}\)

Check Answer

Option c

Q.No:7 TIFR-2016

A particle moving in one dimension is confined inside a rigid box located between \(x=-a/2\) and \(x=a/2\). If the particle is in its ground state \[ \psi_0(x)=\sqrt{2/a}\cos{\frac{\pi x}{a}} \] the quantum mechanical probability of its having a momentum \(p\) is given by
(a) \(\frac{8\hbar^4}{(\pi^2 \hbar^2-p^2 a^2)^2}\cos^2{\frac{pa}{2\hbar}}\)
(b) \(\frac{\pi^2 \hbar^4}{(\pi^2 \hbar^2-p^2 a^2)^2}\sin^2{\frac{pa}{2\hbar}}\)
(c) \(\frac{2\hbar^4}{(\pi^2 \hbar^2-p^2 a^2)^2}\cos^2{\frac{pa}{2\hbar}}\)
(d) \(\frac{16\hbar^4}{(\pi^2 \hbar^2-p^2 a^2)^2}\)

Check Answer

Option a

Q.No:8 TIFR-2017

Denote the commutator of two matrices \(A\) and \(B\) by \([A, B]=AB-BA\) and the anti-commutator by \(\{A, B\}=AB+BA\). If \(\{A, B\}=0\), we can write \([A, BC]=\)
(a) \(-B[A, C]\)
(b) \(B\{A, C\}\)
(c) \(-B\{A, C\}\)
(d) \([A, C]B\)

Check Answer

Option c

Q.No:9 TIFR-2017

The matrix \[ \begin{pmatrix} 100\sqrt{2}&x&0\\ -x&0&-x\\ 0&x&100\sqrt{2} \end{pmatrix} \] where \(x>0\), is known to have two equal eigenvalues. Find the value of \(x\).

Check Answer

Ans 50

Q.No:10 TIFR-2017

A unitary matrix \(U\) is expanded in terms of a Hermitian matrix \(H\), such that \[ U=e^{i\pi H/2} \] If we know that \[ H=\begin{pmatrix} 1/2&0&\sqrt{3}/2\\ 0&1&0\\ \sqrt{3}/2&0&-1/2 \end{pmatrix} \] then \(U\) must be
(a) \(\begin{pmatrix}i&1/2&\sqrt{3}/2\\1/2&i&1/2\\\sqrt{3}/2&1/2&i\end{pmatrix}\)
(b) \(\begin{pmatrix}i/2&0&i\sqrt{3}/2\\0&i&0\\i\sqrt{3}/2&0&-i/2\end{pmatrix}\)
(c) \(\begin{pmatrix}1&0&\sqrt{3}\\0&2&0\\\sqrt{3}&0&-1\end{pmatrix}\)
(d) \(\begin{pmatrix}2i&1&\sqrt{3}/2\\1&2i&0\\\sqrt{3}/2&0&2i\end{pmatrix}\)

Check Answer

Option b

Q.No:11 TIFR-2018

If a \(2\times 2\) matrix \(\mathbb{M}\) is given by \[ \mathbb{M}=\begin{pmatrix} 1&(1-i)/\sqrt{2}\\ (1+i)/\sqrt{2}&0 \end{pmatrix} \] then \(\det{\exp{\mathbb{M}}}=\)
(a) \(e\)
(b) \(e^2\)
(c) \(2i\sin{\sqrt{2}}\)
(d) \(\exp{(-2\sqrt{2})}\)

Check Answer

Option a

Q.No:12 TIFR-2019

The eigenvalues of a \(3\times 3\) matrix \(\mathbb{M}\) are \[ \lambda_1=2 ~ \lambda_2=-1 ~ \lambda_3=1 \] and the eigenvectors are \[ e_1=\begin{pmatrix}1\\1\\1\end{pmatrix} e_2=\begin{pmatrix}1\\1\\-2\end{pmatrix} e_3=\begin{pmatrix}1\\-1\\0\end{pmatrix} \] The matrix \(\mathbb{M}\) is
(a) \(\begin{pmatrix}1&0&1\\0&1&1\\1&1&0\end{pmatrix}\)
(b) \(\begin{pmatrix}0&1&1\\1&0&0\\1&0&2\end{pmatrix}\)
(c) \(\begin{pmatrix}1&0&0\\1&0&-1\\0&-1&1\end{pmatrix}\)
(d) \(\begin{pmatrix}1&1&0\\1&0&1\\0&1&1\end{pmatrix}\)

Check Answer

Option a

Q.No:13 TIFR-2020

The eigenvector \(e_1\) corresponding to the smallest eigenvalue of the matrix \[ \begin{pmatrix} 2a^2&a&0\\ a&1&a\\ 0&a&2a^2 \end{pmatrix} \] where \(a=\sqrt{\frac{3}{2}}\), is given (in terms of its transpose) by
(a) \(e_1^T=\frac{1}{2}\begin{pmatrix}\frac{1}{\sqrt{2}}&-\sqrt{3}&\frac{1}{\sqrt{2}}\end{pmatrix}\)
(b) \(e_1^T=\frac{1}{2}\begin{pmatrix}\sqrt{\frac{3}{2}}&1&\sqrt{\frac{3}{2}}\end{pmatrix}\)
(c) \(e_1^T=\frac{1}{\sqrt{2}}\begin{pmatrix}1&0&-1\end{pmatrix}\)
(d) \(e_1^T=\frac{1}{\sqrt{2}}\begin{pmatrix}1&0&1\end{pmatrix}\)

Check Answer

Option a

Q.No:14 TIFR-2020

The momentum operator \[ i\hbar\frac{d}{dx} \] acts on a wavefunction \(\psi(x)\). This operator is Hermitian
(a) provided the wavefunction \(\psi(x)\) is normalized
(b) provided the wavefunction \(\psi(x)\) and derivate \(\psi'(x)\) are continuous everywhere
(c) provided the wavefunction \(\psi(x)\) vanishes as \(x\to \pm \infty\)
(d) by its very definition

Check Answer

Option c

Q.No:15 TIFR-2021

A unitary matrix \(U\) is expressed in terms of a Hermitian matrix \(H\), such that \[ U=e^{i\pi H/2} \] If the matrix \(H\) is given by \[ H=\sqrt{3} \begin{pmatrix} 1/3&0&\sqrt{2}/3\\ 0&1/\sqrt{3}&0\\ \sqrt{2}/3&0&-1/3 \end{pmatrix} \] then \(U\) will have the form
(a) \(\begin{pmatrix}i/\sqrt{3}&0&i\sqrt{2}/\sqrt{3}\\0&i&0\\i\sqrt{2}/\sqrt{3}&0&-i/\sqrt{3}\end{pmatrix}\)
(b) \(\begin{pmatrix}\sqrt{3}&0&\sqrt{6}\\0&3\sqrt{3}&0\\\sqrt{6}&0&-\sqrt{3}\end{pmatrix}\)
(c) \(\begin{pmatrix}i\sqrt{3}&1/\sqrt{3}&\sqrt{2}/\sqrt{3}\\1/\sqrt{3}&i&1/\sqrt{3}\\\sqrt{2}/\sqrt{3}&1/\sqrt{3}&i/\sqrt{3}\end{pmatrix}\)
(d) \(\begin{pmatrix}3\sqrt{3}i&\sqrt{3}&3/2\\\sqrt{3}&i&0\\\sqrt{2}/\sqrt{3}&0&3\sqrt{3}i\end{pmatrix}\)

Check Answer

Option a

Q.No:16 TIFR-2022

Consider a set of three 3-dimensional vectors \[A=\begin{pmatrix}1 \\ 0\\0\end{pmatrix} \hspace{4mm} B=\begin{pmatrix}0 \\ 1 \\ 0\end{pmatrix} \hspace{4mm} C=\begin{pmatrix}1 \\ 1 \\ 2\end{pmatrix} \] These vectors undergo a linear transformation \[A \to A'=\mathbb{M} A \hspace{4mm} B \to B'=\mathbb{M} B \hspace{4mm} C \to C'=\mathbb{M} C\] where \(\mathbb{M}\) is given by  \[\mathbb{M}=\begin{pmatrix} 1&1&4 \\1&0&1 \\ 2&1&1\end{pmatrix}\] The volume of a parallelopiped whose sides are given by the transformed vectors \(A', B'\) and \(C'\) is
(c) 8
(c) 4
(c) 2
(c) 16

Check Answer

Option a

Q.No:17 TIFR-2022

Consider the inner product in the space of normalisable functions defined on the interval [-1,1] \[\langle f|g\rangle=\int_{-1} ^{1} dx \hspace{1mm} (1+x^2) \hspace{1mm} f(x) \hspace{1mm} g(x)\] The projection of the vector 1 along the vector \(x^2\) is
(a) \(\frac{14}{9} x^2\)
(b) \(\frac{16}{15} \sqrt{\frac{35}{24}}x^2\)
(c) \(\frac{16}{15} x^2\)
(d) \(\sqrt{\frac{35}{24}}x^2\)

Check Answer

Option a

Q.No:18 TIFR-2022

A particle is confined to a one-dimensional lattice with a lattice spacing \(\delta\). In the position space, the Hamiltonian operator for this particle is given by the matrix \[H=E_0 \begin{pmatrix} ...&... & 0&0&0&0 \\ ...& 2&-1 & 0 &0 & 0 \\ 0&-1&2&-1&0&0 \\ 0&0&-1&2&-1&0 \\ 0&0&0&-1&2&... \\ 0&0&0&0&...&...\end{pmatrix}\] Noting that it commutes with the generator \(T\) of translations \[T= \begin{pmatrix} ...&... & 0&0&0&0 \\ ...& 0&1 & 0 &0 & 0 \\ 0&0&0&1&0&0 \\ 0&0&0&0&1&0 \\ 0&0&0&0&...&... \\ 0&0&0&0&...&...\end{pmatrix}\] where \(T=e^{i P \hspace{0.5mm} \delta/\hbar}\) in terms of the momentum operator \(P\), the energy of a state with momentum \(p\) will be
(a) \(4E_0 \hspace{1mm} sin^2 (p\delta / 2\hbar)\)
(b) \(E_0 \hspace{1mm} cos (p\delta / \hbar)\)
(c) \(E_0 \hspace{1mm} sin (p\delta / \hbar)\)
(d) \(E_0 \hspace{1mm} (p\delta / 2\hbar)^2\)

Check Answer

Option a

Q.No:19 TIFR-2023

Consider a symmetric matrix \[M=\begin{pmatrix}1/3&0&2/3\\0&1&0 \\ 2/3&0&1/3\end{pmatrix}\] An orthogonal matrix \(O\) which can be diagonalize this matrix by an orthogonal transformation \(O^T MO\) is given by \(O=\)
(a) \(\begin{pmatrix}\sqrt{3/2}&0&\sqrt{1/3}\\0&1&0 \\ \sqrt{1/3}&0&-\sqrt{2/3}\end{pmatrix}\)
(b) \(\begin{pmatrix}1/\sqrt{2}&0&i/\sqrt{2}\\0&1&0 \\ 1/\sqrt{2}&0&-i/\sqrt{2}\end{pmatrix}\)
(c) \(\begin{pmatrix}1/\sqrt{2}&0&1/\sqrt{2}\\0&1&0 \\ 1/\sqrt{2}&0&-1/\sqrt{2}\end{pmatrix}\)
(d) \(\begin{pmatrix}\sqrt{1/3}&0&\sqrt{3/2}\\0&1&0 \\ \sqrt{2/3}&0&-\sqrt{1/3}\end{pmatrix}\)

Check Answer

Option c

Q.No:20 TIFR-2024

Consider \( \hat{x} \) and \( \hat{p}_x \) as the quantum mechanical position and linear momentum operators with eigenstates \( |x\rangle \) and \( |p_x\rangle \), and eigenvalues \( x \) and \( p_x \), respectively. The eigenvalue of \( \hat{x} \) acting on the state \[ |\psi\rangle = e^{\frac{i\hat{p}_x a}{2\hbar}} |x\rangle \] is
1) \( x + \frac{a}{2} \)
2) \( x - \frac{a}{2} \)
3) \( x + a \)
4) \( x - a \)

Check Answer

Option 2

Q.No:20 TIFR-2024

Consider the following matrix \[ M = \begin{pmatrix} 1 & 5 & -7 & 1 \\ 1 & 0 & 2 & 2 \\ 9 & -1 & 3 & 1 \\ 9 & 6 & -7 & -4 \end{pmatrix} \] What is \( \det e^M \)?
1) e
2)\(e^{1210}\)
3) 1
4) \(e^{-1210}\)

Check Answer

Option 3

Q.No:21 TIFR-2025

The \(n \times n\) \((n > 4)\) matrix \(M\), with all entries equal to \(1\), has:
1) Precisely \(n - 1\) degenerate eigenvalues and one other non-degenerate eigenvalue
2) Precisely \(n - 2\) degenerate eigenvalues and two other non-degenerate eigenvalues
3) Precisely \(2\) degenerate eigenvalues and \(n - 2\) other non-degenerate eigenvalues
4) No degenerate eigenvalues

Check Answer

Option 1

Exit mobile version