Site icon S. N. Bose Physics Learning Center

Laplace Transform CSIR , GATE and JEST

Q.No:1 CSIR Jun-2015

The Laplace transform of \(6t^3 + 3 \sin 4t\) is
(1) \(\frac{36}{s^{4}} + \frac{12}{s^{2} + 16}\)
(2) \(\frac{36}{s^{4}} + \frac{12}{s^{2} - 16}\)
(3) \(\frac{18}{s^{4}} + \frac{12}{s^{2} - 16}\)
(4) \(\frac{36}{s^{3}} + \frac{12}{s^{2} + 16}\)

Check Answer

Option 1

Q.No:2 CSIR Dec-2016

The Laplace transform of \[ f(t)= \begin{cases} \frac{t}{T}, & 0 < t T \end{cases} \] is
(1) \(-(1-e^{-sT})/s^2 T\)
(2) \((1-e^{-sT})/s^2 T\)
(3) \((1+e^{-sT})/s^2 T\)
(4) \((1-e^{sT})/s^2 T\)

Check Answer

Option 2

Q.No:3 CSIR Dec-2017

Consider the differential equation \(\frac{dy}{dt}+ay=e^{-bt}\) with the initial condition \(y(0)=0\). Then the Laplace transform \(Y(s)\) of the solution \(y(t)\) is
(1) \(\frac{1}{(s+a)(s+b)}\)
(2) \(\frac{1}{b(s+a)}\)
(3) \(\frac{1}{a(s+b)}\)
(4) \(\frac{e^{-a}-e^{-b}}{b-a}\)

Check Answer

Option 1

Q.No:4 CSIR Assam Dec-2019

The Laplace transform of the function \(y(t)\) which satisfies the differential equation \(\frac{dy}{dt}+y=te^{-2t}\), with the boundary condition \(y(0)=9\), is
(1) \(\frac{9}{(s+1)(s+2)^2}+\frac{1}{s+1}\)
(2) \(\frac{9}{s+1}+\frac{1}{(s+1)(s+2)^2}\)
(3) \(\frac{9}{s+1}+\frac{1}{(s+2)^2}\)
(4) \(\frac{9}{(s+2)^2}+\frac{1}{s+1}\)

Check Answer

Option 2

Q.No:5 CSIR Sep-2022

The Laplace transform \(L[f](y)\) of a function \[ f(x)= \begin{cases} 1, & 2n\leq x \leq 2n+1 \\ 0, & 2n+1\leq x \leq 2n+2 \end{cases} \] n=0,1,2... is
(1) \(\frac{e^{-y}(e^{-y}+1)}{y(e^{-2y}+1)}\)
(2) \(\frac{e^{y}-e^{-y}}{y}\)
(3) \(\frac{e^{y}+e^{-y}}{y}\)
(4) \(\frac{e^{y}(e^{y}-1)}{y(e^{2y}-1)}\)

Check Answer

Option 4

Q.No:6 CSIR June-2023

The value of the integral \(\int_{-\infty}^\infty dx 2^{-\frac{|x|}{\pi}}\delta(\sin x)\) where \(\delta(x)\) is the Dirac delta function, is
1) \(3\)
2) \(0\)
3) \(5\)
4) \(1\)

Check Answer

Option 1

Q.No:1 GATE-2021

A function \(f(t)\) is defined only for \(t\geq 0\). The Laplace transform of \(f(t)\) is \[ \mathcal{L}(f; s)=\int_{0}^{\infty} e^{-st} f(t)dt \] whereas the Fourier transform of \(f(t)\) is \[ \tilde{f}(\omega)=\int_{0}^{\infty} f(t)e^{-i\omega t}dt. \] The correct statement(s) is(are)
(A) The variable \(s\) is always real.
(B) The variable \(s\) can be complex.
(C) \(\mathcal{L}(f; s)\) and \(\tilde{f}(\omega)\) can never be made connected.
(D) \(\mathcal{L}(f; s)\) and \(\tilde(f)(\omega)\) can be made connected.

Check Answer

Option B-D

Q.No:1 JEST-2014

The Laplace transformation of \(e^{-2t}\sin{4t}\) is
(a) \(\frac{4}{s^2+4s+25}\)
(b) \(\frac{4s}{s^2+4s+20}\)
(c) \(\frac{4}{s^2+4s+20}\)
(d) \(\frac{4s}{2s^2+4s+20}\)

Check Answer

Option c

Q.No:2 JEST-2018

The Laplace transform of \((\sin{(at)}-at\cos{(at)})/(2a^3)\) is
(A) \(\frac{2as}{(s^2+a^2)^2}\)
(B) \(\frac{s^2-a^2}{(s^2+a^2)^2}\)
(C) \(\frac{1}{(s+a)^2}\)
(D) \(\frac{1}{(s^2+a^2)^2}\)

Check Answer

Option D

Exit mobile version