Linear Algebra and Formalism GATE

Q.No:1 GATE-2012

Identify the CORRECT statement for the following vectors \(\vec{a}=3\hat{i}+2\hat{j}\) and \(\vec{b}=\hat{i}+2\hat{j}\)
(A) The vectors \(\vec{a}\) and \(\vec{b}\) are linearly independent
(B) The vectors \(\vec{a}\) and \(\vec{b}\) are linearly dependent
(C) The vectors \(\vec{a}\) and \(\vec{b}\) are orthogonal
(D) The vectors \(\vec{a}\) and \(\vec{b}\) are normalized

Check Answer

Option A

Q.No:2 GATE-2012

The eigenvalues of the matrix \(\begin{pmatrix}0&1&0\\1&0&1\\0&1&0\end{pmatrix}\) are
(A)\(0, 1, 1\)
(B) \(0, -\sqrt{2},\sqrt{2}\)
(C) \(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\)
(D) \(\sqrt{2}, \sqrt{2}, 0\)

Check Answer

Option B

Q.No:3 GATE-2013

The degenerate eigenvalue of the matrix \(\begin{bmatrix}4&-1&-1\\-1&4&-1\\-1&-1&4\end{bmatrix}\) is (your answer should be an integer) _____________

Check Answer

Ans 5

Q.No:4 GATE-2014

The matrix \(A=\frac{1}{\sqrt{3}}\begin{bmatrix}1&1+i\\1-i&-1\end{bmatrix}\) is
(A) orthogonal
(B) symmetric
(C) anti-symmetric
(D) unitary

Check Answer

Option D

Q.No:5 GATE-2014

\(\psi_1\) and \(\psi_2\) are two orthogonal states of a spin \(\frac{1}{2}\) system. It is given that \[ \psi_1=\frac{1}{\sqrt{3}}\begin{pmatrix}1\\0\end{pmatrix}+\sqrt{\frac{2}{3}}\begin{pmatrix}0\\1\end{pmatrix}, \] where \(\begin{pmatrix}1\\0\end{pmatrix}\) and \(\begin{pmatrix}0\\1\end{pmatrix}\) represent the spin-up and spin-down states, respectively. When the system is in the state \(\psi_2\), its probability to be in the spin-up state is __________.

Check Answer

Ans 0.66-0.68

Q.No:6 GATE-2016

Which of the following operators is Hermitian?
(A) \(\frac{d}{dx}\)
(B) \(\frac{d^2}{dx^2}\)
(C) \(i\frac{d^2}{dx^2}\)
(D) \(\frac{d^3}{dx^3}\)

Check Answer

Option B

Q.No:7 GATE-2016

If \(x\) and \(p\) are the \(x\) components of the position and the momentum operators of a particle respectively, the commutator \([x^2, p^2]\) is
(A) \(i\hbar(xp+px)\)
(B) \(2i\hbar(xp-px)\)
(C) \(i\hbar(xp+px)\)
(D) \(2i\hbar(xp+px)\)

Check Answer

Option D

Q.No:8 GATE-2016

For the parity operator \(P\), which of the following statements is NOT true?
(A) \(P^{\dagger}=P\)
(B) \(P^2=-P\)
(C) \(P^2=I\)
(D) \(P^{\dagger}=P^{-1}\)

Check Answer

Option B

Q.No:9 GATE-2017

The Poisson bracket \([x, xp_y+yp_x]\) is equal to
(A) \(-x\)
(B) \(y\)
(C) \(2p_x\)
(D) \(p_y\)

Check Answer

Option B

Q.No:10 GATE-2017

Let \(X\) be a column vector of dimension \(n>1\) with at least one non-zero entry. The number of non-zero eigenvalues of the matrix \(M=XX^T\) is
(A) \(0\)
(B) \(n\)
(C) \(1\)
(D) \(n-1\)

Check Answer

Option C

Q.No:11 GATE-2017

Which one of the following operators is Hermitian?
(A) \(i\frac{(p_x x^2-x^2 p_x)}{2}\)
(B) \(i\frac{(p_x x^2+x^2 p_x)}{2}\)
(C) \(e^{ip_x a}\)
(D) \(e^{-ip_x a}\)

Check Answer

Option A

Q.No:12 GATE-2018

The eigenvalues of a Hermitian matrix are all
(A) real
(B) imaginary
(C) of modulus one
(D) real and positive

Check Answer

Option A

Q.No:13 GATE-2018

Given \(\vec{V}_1=\hat{i}-\hat{j}\) and \(\vec{V}_2=-2\hat{i}+3\hat{j}+2\hat{k}\), which one of the following \(\vec{V}_3\) makes \((\vec{V}_1, \vec{V}_2, \vec{V}_3)\) a complete set for a three dimensional real linear vector space?
(A) \(\vec{V}_3=\hat{i}+\hat{j}+4\hat{k}\)
(B) \(\vec{V}_3=2\hat{i}-\hat{j}+2\hat{k}\)
(C) \(\vec{V}_3=\hat{i}+2\hat{j}+6\hat{k}\)
(D) \(\vec{V}_3=2\hat{i}+\hat{j}+4\hat{k}\)

Check Answer

Option D

Q.No:14 GATE-2018

If \(H\) is the Hamiltonian for a free particle with mass \(m\), the commutator \([x, [x, H]]\) is
(A) \(\hbar^2/m\)
(B) \(-\hbar^2/m\)
(C) \(-\hbar^2/(2m)\)
(D) \(\hbar^2/(2m)\)

Check Answer

Option B

Q.No:15 GATE-2019

During a rotation, vectors along the axis of rotation remain unchanged. For the rotation matrix \(\begin{pmatrix}0&1&0\\0&0&-1\\-1&0&0\end{pmatrix}\), the unit vector along the axis of rotation is
(A) \(\frac{1}{3}(2\hat{i}-\hat{j}+2\hat{k})\)
(B) \(\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})\)
(C) \(\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})\)
(D) \(\frac{1}{3}(2\hat{i}+2\hat{j}-\hat{k})\)

Check Answer

Option B

Q.No:16 GATE-2019

Let \(|\psi_1\rangle=\begin{pmatrix}1\\0\end{pmatrix}, |\psi_2\rangle=\begin{pmatrix}0\\1\end{pmatrix}\) represent two possible states of a two-level quantum system. The state obtained by the incoherent superposition of \(|\psi_1\rangle\) and \(|\psi_2\rangle\) is given by a density matrix that is defined as \(\rho\equiv c_1|\psi_1\rangle \langle \psi_1|+c_2|\psi_2\rangle \langle \psi_2|\). If \(c_1=0.4\) and \(c_2=0.6\), the matrix element \(\rho_{22}\) (rounded off to one decimal place) is __________.

Check Answer

Ans 0.6

Q.No:17 GATE-2019

The Hamiltonian operator for a two-level quantum system is \(H=\begin{pmatrix}E_1&0\\0&E_2\end{pmatrix}\). If the state of the system at \(t=0\) is given by \(|\psi(0)\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}\) then \(|\langle \psi(0)|\psi(t)\rangle|^2\) at a later time \(t\) is
(A) \( \frac{1}{2}\left(1 + e^{-(E_1 - E_2)t/\hbar}\right) \)
(B) \(\frac{1}{2}(1-e^{-(E_1-E_2)t/\hbar})\)
(C) \(\frac{1}{2}(1+\cos{[(E_1-E_2)t/\hbar]})\)
(D) \(\frac{1}{2}(1-\cos{[(E_1-E_2)t/\hbar]})\)

Check Answer

Option C

Q.No:18 GATE-2020

A real, invertible \(3\times 3\) matrix \(M\) has eigenvalues \(\lambda_i\), (\(i=1, 2, 3\)) and the corresponding eigenvectors are \(|e_i\rangle\), (\(i=1, 2, 3\)) respectively. Which one of the following is correct?
(A) \(M|e_i\rangle=\frac{1}{\lambda_i}|e_i\rangle\), for \(i=1, 2, 3\)
(B) \(M^{-1}|e_i\rangle=\frac{1}{\lambda_i}|e_i\rangle\), for \(i=1, 2, 3\)
(C) \(M^{-1}|e_i\rangle=\lambda_i|e_i\rangle\), for \(i=1, 2, 3\)
(D) The eigenvalues of \(M\) and \(M^{-1}\) are not related.

Check Answer

Option B

Q.No:19 GATE-2020

The product of eigenvalues of \(\begin{pmatrix}0&0&1\\0&1&0\\1&0&0\end{pmatrix}\) is
(A) \(-1\)
(B) \(1\)
(C) \(0\)
(D) \(2\)

Check Answer

Option A

Q.No:20 GATE-2020

Let \(|e_1\rangle\equiv\begin{pmatrix}1\\0\\0\end{pmatrix}, |e_2\rangle\equiv\begin{pmatrix}1\\1\\0\end{pmatrix}\) and \(|e_3\rangle\equiv\begin{pmatrix}1\\1\\1\end{pmatrix}\). Let \(S=\{|e_1\rangle, |e_2\rangle, |e_3\rangle\}\). Let \(\mathbb{R}^3\) denote the three-dimensional real vector space. Which one of the following is correct?
(A) \(S\) is an orthonormal set
(B) \(S\) is a linearly dependent set
(C) \(S\) is a basis for \(\mathbb{R}^3\)
(D) \(\sum_{i=1}^{3} |e_i\rangle \langle e_i|=\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}\)

Check Answer

Option C

Q.No:21 GATE-2020

Which one of the following matrices does NOT represent a proper rotation in a plane?
(A) \(\begin{pmatrix}-\sin{\theta}&\cos{\theta}\\-\cos{\theta}&-\sin{\theta}\end{pmatrix}\)
(B) \(\begin{pmatrix}\cos{\theta}&\sin{\theta}\\-\sin{\theta}&\cos{\theta}\end{pmatrix}\)
(C) \(\begin{pmatrix}\sin{\theta}&\cos{\theta}\\-\cos{\theta}&\sin{\theta}\end{pmatrix}\)
(D) \(\begin{pmatrix}-\sin{\theta}&\cos{\theta}\\-\cos{\theta}&\sin{\theta}\end{pmatrix}\)

Check Answer

Option D

Q.No:22 GATE-2021

\(P\) and \(Q\) are two Hermitian matrices and there exists a matrix \(R\), which diagonalizes both of them, such that \(RPR^{-1}=S_1\) and \(RQR^{-1}=S_2\), where \(S_1\) and \(S_2\) are diagonal matrices. The correct statement(s) is(are)
(A) All the elements of both matrices \(S_1\) and \(S_2\) are real.
(B) The matrix \(PQ\) can have complex eigenvalues.
(C) The matrix \(QP\) can have complex eigenvalues.
(D) The matrices \(P\) and \(Q\) commute.

Check Answer

Option A & D

Q.No:23 GATE-2022

An electromagnetic pulse has a pulse width of \(10^{-3}\hspace{1mm}\text{s}\). The uncertainty in the momentum of the corresponding photon is of the order of \(10^{-N} \hspace{1mm}\text{kg}\hspace{1mm}\text{m}\hspace{1mm}\text{s}^{-1}\), where \(N\) is an integer. The value of \(N\) is -------------- (speed of light \(=3\times 10^8 \hspace{1mm}\text{m}\hspace{1mm}\text{s}^{-1}\), \(h=6.6\times 10^{-34} \hspace{1mm}\text{J}\hspace{1mm}\text{s}\))

Check Answer

ANS 39-40

Q.No:24 GATE-2022

What is the maximum number of free independent real parameters specifying an \(n\)-dimensional orthogonal matrix?
(a) \(n(n-2)\)
(b) \((n-1)^2\)
(c) \(\frac{n(n-1)}{2}\)
(d) \(\frac{n(n+1)}{2}\)

Check Answer

Option c

Q.No:25 GATE-2023

A \(4 \times 4\) matrix M has the property \(M^\dagger=-M\) and \(M^4=1\), where \(1\) is the \(4 \times 4\) identity matrix. Which one of the following is the CORRECT set of eigenvalues of the matrix \(M\)?
(A) \((1, 1, -1, -1)\)
(B) \((i, i, -i, -i)\)
(C) \((i, i, i, -i)\)
(D) \((1, 1, -i, -i)\)

Check Answer

Option B

Q.No:26 GATE-2023

Which of the following options represent(s) linearly independent pair(s) of functions of a real variable \(x\) ?
(A) \(e^{ix}\) and \(e^{-ix}\)
(B) \(x\) and \(e^x\)
(C) \(2^x\) and \(2^{-3+x}\)
(D) \(e^{ix}\) and \(sin \hspace{0.5mm} x\)

Check Answer

Option A, B, D

Q.No:27 GATE-2023

The wavefunction of a particle in one dimension is given by \[\psi(x)=\left\{ \begin{array}{ll} M & -a<x<a \\ 0 & \text{otherwise. } \end{array} \right.\] Here \(M\) and \(a\) are positive constants. If \(\varphi(p)\) is the corresponding momentum space wavefunction, which one of the following plots best represents \(|\varphi(p)|^2\) ?
Image
(A)
Image
(B)
Image
(C)
Image
(D)

Check Answer

Option C

Q.No:28 GATE-2024

Consider two matrices: \( P = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \) and \( Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). Which of the following statement is/are true?
1) \(P\) and \(Q\) have the same set of eigenvalues
2) \(P\) and \(Q\) commute with each other
3) \(P\) and \(Q\) have different sets of linearly independent eigenvectors
4) \(P\) is diagonalizable

Check Answer

6

Q.No:29 GATE-2025

Consider the set \(\{1, x, x^{2}\}\). An orthonormal basis in \(x \in [-1,1]\) is formed from these three terms, where the normalization of a function \(f(x)\) is defined via \[ \int_{-1}^{1} x^{2}\, [f(x)]^{2}\, dx = 1 \] If the orthonormal basis set is \[ \left( \sqrt{\frac{3}{2}},\; \sqrt{\frac{5}{2}}\, x,\; \frac{1}{2}\sqrt{\frac{21}{N}}\, (5x^{2} - 3) \right) \] then the value of \(N\) (in integer) is _____

Check Answer

6

48 Comments
Inline Feedbacks
View all comments
Saurabh Sharma

option(1)

photo_2024-10-26-10.08.07
chinmaybk

Answer: B

IMG-20241028-WA0004
Twinkle

ans

4ans
Twinkle

answer

4ans-part-2
Twinkle

ans

5ansgate
Sandra S

Q No6

IMG-20241026-WA0007
LeenaVS

GATE Qn. 09

IMG_20241026_104540
Rishika

Answer

WhatsApp-Image-2024-10-26-at-10.14.35
Sharika

Q13 GATE

IMG_20241026_100442
Sharika

Q14 GATE

IMG_20241026_100507
bhaarat_singh

Solution

IMG_20241026_102358
Lahari Eluri

option B

WhatsApp-Image-2024-10-26-at-11.11.42_a88263e0
Pannaga@21

Q.No 19 GATE 2020
Option A

IMG_20241029_105015
Nazrin

answer

gate-21-ans
shiv

Answer (a) and (d)

IMG_20241029_103253
Last edited 1 year ago by shiv
Sandra S

Q no 23

20241029_103600
Sandra S

Q no 25

IMG-20241029-WA0012
ADHI007

Answer

WhatsApp-Image-2024-10-29-at-11.03.32-AM
48
0
Would love your thoughts, please comment.x
()
x
search previous next tag category expand menu location phone mail time cart zoom edit close