Complex Analysis GATE & CSIR

Q.No:1 GATE-2012

The value of the integral \(\oint_C e^{1/z} dz\), using the contour \(C\) of circle with unit radius \(|z|=1\) is
(A) \(0\)
(B) \(1-2\pi i\)
(C) \(1+2\pi i\)
(D) \(2\pi i\)

Check Answer

Option D

Q.No:2 GATE-2013

For the function \(f(z)=\frac{16z}{(z+3)(z-1)^2}\), the residue at the pole \(z=1\) is (your answer should be an integer) ____________.

Check Answer

Ans 3

Q.No:3 GATE-2014

The value of the integral \[ \oint_C \frac{z^2}{e^z+1} dz, \] where \(C\) is the circle \(|z|=4\), is
(A) \(2\pi i\)
(B) \(2\pi^2 i\)
(C) \(4\pi^3 i\)
(D) \(4\pi^2 i\)

Check Answer

Option C

Q.No:4 GATE-2015

Consider \(w=f(z)=u(x, y)+iv(x, y)\) to be an analytic function in a domain \(D\). Which one of the following options is \({\bf NOT}\) correct?
(A) \(u(x, y)\) satisfies Laplace equation in \(D\)
(B) \(v(x, y)\) satisfies Laplace equation in \(D\)
(C) \(\int_{z_1}^{z_2} f(z) dz\) is dependent on the choice of the contour between \(z_1\) and \(z_2\) in \(D\)
(D) \(f(z)\) can be Taylor expanded in \(D\)

Check Answer

Option C

Q.No:5 GATE-2015

Consider a complex function \(f(z)=\frac{1}{z\left(z+\frac{1}{2}\right)\cos{(z\pi)}}\). Which one of the following statements is correct?
(A) \(f(z)\) has simple poles at \(z=0\) and \(z=-1/2\)
(B) \(f(z)\) has a second order pole at \(z=-1/2\)
(C) \(f(z)\) has infinite number of second order poles
(D) \(f(z)\) has all simple poles

Check Answer

Option B

Q.No:6 GATE-2017

The contour integral \(\oint \frac{dz}{1+z^2}\) evaluated along a contour going from \(-\infty\) to \(+\infty\) along the real axis and closed in the lower half-plane by a half circle is equal to __________. (up to two decimal places).

Check Answer

Ans 3.13-3.15

Q.No:7 GATE-2017

The imaginary part of an analytic complex function is \(\nu(x, y)=2xy+3y\). The real part of the function is zero at the origin. The value of the real part of the function at \(1+i\) is ___________. (up to two decimal places).

Check Answer

Ans 2.90-3.10

Q.No:8 GATE-2019

The absolute value of the integral \[ \int \frac{5z^3+3z^2}{z^2-4} dz, \] over the circle \(|z-1.5|-1\) in complex plane, is _____________ (up to two decimal places).

Check Answer

Ans 81.60-81.80

Q.No:9 GATE-2019

The pole of the function \(f(z)=\cot{z}\) at \(z=0\) is
(A) a removable singularity
(B) an essential singularity
(C) a simple pole
(D) a second order pole

Check Answer

Option C

Q.No:10 GATE-2019

The value of the integral \(\int_{-\infty}^{\infty} \frac{\cos{(kx)}}{x^2+a^2} dx\), where \(k>0\) and \(a>0\), is
(A) \(\frac{\pi}{a}e^{-ka}\)
(B) \(\frac{2\pi}{a}e^{-ka}\)
(C) \(\frac{\pi}{2a}e^{-ka}\)
(D) \(\frac{3\pi}{2a}e^{-ka}\)

Check Answer

Option A

Q.No:11 GATE-2020

For a complex variable \(z\) and the contour \(c:|z|=1\) taken in the counter clockwise direction, \(\frac{1}{2\pi i}\oint_C \left(z-\frac{2}{z}+\frac{3}{z^2}\right)dz=\) ______________.

Check Answer

Ans (-2)

Q.No:12 GATE-2021

A contour integral is defined as \[ I_n=\oint_{C} \frac{dz}{(z-n)^2+\pi^2} \] where \(n\) is a positive integer and \(C\) is the closed contour, as shown in the figure, consisting of the line from \(-100\) to \(100\) and the semicircle traversed in the counter-clockwise sense.
Image
The value of \(\sum_{n=1}^{5} I_n\) (in integer) is __________.

Check Answer

Ans 5

Q.No:13 GATE-2022

Complex function \(f(z)=z+|z-a|^2\) (\(a\) is a real number) is
(a) continuous at \((a, a)\)
(b) complex-differentiable at \((a, a)\)
(c) complex-differentiable at \((a, 0)\)
(d) analytic at \((a, 0)\)

Check Answer

Option a,c

Q.No:14 GATE-2023

Consider two real functions \[U(x,y)=xy()x^2-y^2,\] \[V(x,y)=ax^4+by^4+cx^2y^2+k,\] where \(k\) is a real constant and \(a,b,c\) are real coefficients. If \(U(x,y) +i V(x,y)\) is analytic, then what is the value of \(a\times b\times c\) ?
(A) \(\frac{1}{8}\)
(B) \(\frac{3}{28}\)
(C) \(\frac{5}{36}\)
(D) \(\frac{3}{32}\)

Check Answer

Option D

Q.No:15 GATE-2023

Consider the complex function \[f(z)=\frac{z^2 \hspace{0.5mm} sin \hspace{0.5mm} z}{(z-\pi)^4}.\] At \(z=\pi\) , which of the following options is(are) CORRECT?
(A) The order of the pole is 4
(B) The order of the pole is 3
(C) The residue at the pole is \(\frac{\pi}{6}\)
(D) The residue at the pole is \(\frac{2\pi}{3}\)

Check Answer

Option B

Q.No:16 GATE-2024

The complex function \[ e^{-\left(\frac{2}{z-1}\right)} \] has
(A) a simple pole at \( z = 1 \)
(B) an essential singularity at \( z = 1 \)
(C) a residue equal to \( -2 \) at \( z = 1 \)
(D) a branch point at \( z = 1 \)

Check Answer

Option B,C

Q.No:1 CSIR Dec-2014

The principal value of the integral \(\int_{-\infty}^{\infty} \frac{\sin{(2x)}}{x^3} dx\) is
(1) \(-2\pi\)
(2) \(-\pi\)
(3) \(\pi\)
(4) \(2\pi\)

Check Answer

Option 1

Q.No:2 CSIR Dec-2014

The Laurent series expansion of the function \(f(z)=e^z+e^{1/z}\) about \(z=0\) is given by
(1) \(\sum_{n=-\infty}^{\infty} \frac{z^n}{n!}\) for all \(|z|<\infty\)
(2) \(\sum_{n=0}^{\infty} \left(z^n+\frac{1}{z^n}\right) \frac{1}{n!}\) only if \(0<|z|<1\)
(3) \(\sum_{n=0}^{\infty} \left(z^n+\frac{1}{z^n}\right) \frac{1}{n!}\) for all \(0<|z|<\infty\)
(4) \(\sum_{n=-\infty}^{\infty} \frac{z^n}{n!}\), only if \(|z|<1\)

Check Answer

Option 3

Q.No:3 CSIR Dec-2014

Consider the function \(f(z)=\frac{1}{z}\ln{(1-z)}\) of a complex variable \(z=re^{i\theta}\) (\(r\geq 0, -\infty<\theta<\infty\)). The singularities of \(f(z)\) are as follows:
(1) branch points at \(z=1\) and \(z=\infty\); and a pole at \(z=0\) only for \(0\leq \theta<2\pi\)
(2) branch points at \(z=1\) and \(z=\infty\); and a pole at \(z=0\) for all \(\theta\) other than \(0\leq \theta<2\pi\)
(3) branch points at \(z=1\) and \(z=\infty\); and a pole at \(z=0\) for all \(\theta\)
(4) branch points at \(z=0, z=1\) and \(z=\infty\).

Check Answer

Option 2

Q.No:4 CSIR June-2015

The value of the integral \(\int^{\infty}_{- \infty}\frac{dx}{1 +x^4}\) is
(1) \(\frac{\pi}{\sqrt{2}}\)
(2) \(\frac{\pi}{2}\)
(3) \(\sqrt{2}{\pi}\)
(4) \(2 {\pi}\)

Check Answer

Option 1

Q.No:5 CSIR Dec-2015

The function \(\frac{z}{\sin{\pi z^2}}\) of a complex variable \(z\) has
(1) a simple pole at \(0\) and poles of order \(2\) at \(\pm \sqrt{n}\) for \(n=1, 2, 3 \cdots\)
(2) a simple pole at \(0\) and poles of order \(2\) at \(\pm \sqrt{n}\) and \(\pm i\sqrt{n}\) for \(n=1, 2, 3 \cdots\)
(3) poles of order \(2\) at \(\pm \sqrt{n}\), \(n=0, 1, 2, 3 \cdots\)
(4) poles of order \(2\) at \(\pm n\), \(n=0, 1, 2, 3 \cdots\)

Check Answer

Option 2

Q.No:6 CSIR June-2016

The value of the contour integral \[ \frac{1}{2\pi i}\oint_C \frac{e^{4z}-1}{\cosh{(z)}-2\sinh{(z)}} dz \] around the unit circle \(C\) traversed in the anti-clockwise direction, is
(1) \(0\)
(2) \(2\)
(3) \(-8/\sqrt{3}\)
(4) \(-\tanh{\left(\frac{1}{2}\right)}\)

Check Answer

Option 3

Q.No:7 CSIR Dec-2016

The Fourier transform \(\int_{-\infty}^{\infty} dx f(x) e^{ikx}\) of the function \(f(x)=\frac{1}{x^2+2}\) is
(1) \(\sqrt{2}\pi e^{-\sqrt{2}|k|}\)
(2) \(\sqrt{2}\pi e^{-\sqrt{2}k}\)
(3) \(\frac{\pi}{\sqrt{2}} e^{-\sqrt{2}k}\)
(4) \(\frac{\pi}{\sqrt{2}} e^{-\sqrt{2}|k|}\)

Check Answer

Option 4

Q.No:8 CSIR June-2017

The integral \(\oint_{\Gamma} \frac{ze^{i\pi z/2}}{z^2-1} dz\) along the closed contour \(\Gamma\) shown in the figure is
Image
(1) \(0\)
(2) \(2\pi\)
(3) \(-2\pi\)
(4) \(4\pi i\)

Check Answer

Option 3

Q.No:9 CSIR June-2017

Let \(u(x, y)=e^{ax}\cos{(by)}\) be the real part of a function \(f(z)=u(x, y)+iv(x, y)\) of the complex variable \(z=x+iy\), where \(a, b\) are real constants and \(a\neq 0\). The function \(f(z)\) is complex analytic everywhere in the complex plane if and only if
(1) \(b=0\)
(2) \(b=\pm a\)
(3) \(b=\pm 2\pi a\)
(4) \(b=a\pm 2\pi\)

Check Answer

Option 2

Q.No:10 CSIR June-2018

What is the value of \(\alpha\) for which \(f(x, y)=2x+3(x^2-y^2)+2i(3xy+\alpha y)\) is an analytic function of complex variable \(z=x+iy\)?
(1) \(1\)
(2) \(0\)
(3) \(3\)
(4) \(2\)

Check Answer

Option 1

Q.No:11 CSIR Dec-2018

The value of the integral \(\oint_C \frac{dz}{z} \frac{\tanh{2z}}{\sin{\pi z}}\), where \(C\) is a circle of radius \(\frac{\pi}{2}\), traversed counter-clockwise, with centre at \(z=0\), is
(1) \(4\)
(2) \(4i\)
(3) \(2i\)
(4) \(0\)

Check Answer

Option 2

Q.No:12 CSIR Dec-2018

The integral \(I=\int_{C} e^z dz\) is evaluated from the point \((-1,0)\) to \((1,0)\) along the contour \(C\), which is an arc of the parabola \(y=x^2-1\), as shown in the figure.
Image
The value of \(I\) is
(1) \(0\)
(2) \(2\sinh{1}\)
(3) \(e^{2i}\sinh{1}\)
(4) \(e+e^{-1}\)

Check Answer

Option 2

Q.No:13 CSIR Dec-2018

The contour \(C\) of the following integral \[ \oint_{C} dz \frac{\sqrt{(z-1)(z-3)}}{(z^2-25)^3}, \] in the complex \(z\)-plane is shown in the figure below.
Image
This integral is equivalent to an integral along the contours
Image
(1)
Image
(2)
Image
(3)
Image
(4)

Check Answer

Option 2

Q.No:14 CSIR June-2019

The value of the definite integral \(\int_{0}^{\pi} \frac{d\theta}{5+4\cos{\theta}}\) is
(1) \(4\pi/3\)
(2) \(2\pi/3\)
(3) \(\pi\)
(4) \(\pi/3\)

Check Answer

Option 4

Q.No:15 CSIR Dec-2019

Let \(C\) be the circle of radius \(\pi/4\), centered at \(z=\frac{1}{4}\) in the complex \(z\)-plane that is traversed counter-clockwise. The value of the contour integral \(\oint_{C} \frac{z^2}{\sin^2{4z}} dz\) is
(1) \(0\)
(2) \(\frac{i\pi^2}{4}\)
(3) \(\frac{i\pi^2}{16}\)
(4) \(\frac{i\pi}{4}\)

Check Answer

Option 3

Q.No:16 Assam CSIR Dec-2019

The value of the integral \(\frac{1}{2\pi i}\oint_{C} \frac{z}{\sin{z}} dz\), where \(C\) is the contour as shown in the figure below, is
Image
(1) \(+\pi\)
(2) \(-\pi\)
(3) \(-i\pi\)
(4) \(i\pi\)

Check Answer

Option 1

Q.No:17 Assam CSIR Dec-2019

Three domains \(D_1, D_2\) and \(D_3\) of the complex \(z\)-plane are shown in the figure below.
Image
The Laurent series \(\sum_{n=2}^{\infty} \frac{(-1)^n}{(z-1)^n}=\frac{1}{(z-1)^2}-\frac{1}{(z-1)^3}+\frac{1}{(z-1)^4}-\cdots\) converges to the complex function \(f(z)=\frac{1}{z(z-1)}\) in the
(1) domain \(D_2\), but not in \(D_3\)
(2) domain \(D_1\), but not in \(D_2\)
(3) domains \(D_2\) and \(D_3\)
(4) domains \(D_1\) and \(D_3\)

Check Answer

Option 3

Q.No:18 CSIR June-2020

A function of a complex variable \(z\) is defined by the integral \(f(z)=\oint_{\Gamma} \frac{w^2-2}{w-z} dw\), where \(\Gamma\) is a circular contour of radius \(3\), centred at origin, running counter-clockwise in the \(w\)-plane. The value of the function at \(z=(2-i)\) is
(a) \(0\)
(b) \(1-4i\)
(c) \(8\pi+2\pi i\)
(d) \(-\frac{2}{\pi}-\frac{i}{2\pi}\)

Check Answer

Option c

Q.No:19 CSIR Sep-2022

If \(z=i^{i^{i^{.^{.}}}}\) (note that the exponent continuous indefinitely), then a possible value of \(\frac{1}{z}\) ln \(z\) is
(1) 2i ln i
(2) ln i
(3) i ln i
(4) 2 ln i

Check Answer

Option 2

Q.No:20 CSIR Sep-2022

At \(z=0\),the function \(\frac{1}{z- sin \hspace{1mm}z}\) of a complex variable \(z\) has
(1) no singularity
(2) a simple pole
(3) a pole of order 2
(4) a pole of order 3

Check Answer

Option 4

Q.No:21 CSIR Sep-2022

The value of the integral \[\int_{-\infty}^{\infty} \frac{\cos{(ax)}}{x^2+1} dx \] for \(a > 0 \)
(1) \(\pi e^\alpha\)
(2) \(\pi e^{-\alpha}\)
(3) \(\pi e^{-\alpha/2}\)
(4) \(\pi e^{\alpha/2}\)

Check Answer

Option 2

Q.No:22 CSIR June-2023

The locus of the curve \(Im(\frac{\pi (z-1)-1}{z-1})=1\) in the complex z-plane is a circle centred at (\(x_0,y_0\)) and radius \(R\). The values of (\(x_0,y_0\)) and \(R\), respectively, are
1) \((1,\frac{1}{2})\) and \(\frac{1}{2}\)
2) \((1,-\frac{1}{2})\) and \(\frac{1}{2}\)
3) \((1,1)\) and 1
4) \((1,-1)\) and 1

Check Answer

Option 1

Q.No:23 CSIR Dce-2023

If \( z \) is a complex number, which among the following sets is neither open nor closed?
1)\(\{z \mid 0 \leq |z - 1| \leq 2\}\)
2) \(\{z \mid |z| \leq 1\}\)
3) \(\{z \mid z \in (\mathbb{C} - \{3\}) \text{ and } |z| \leq 100\}\)
4) \(\left\{ z \mid z = r e^{i\theta}, 0 \leq \theta \leq \frac{\pi}{4} \right\}\)

Check Answer

Option 3

Q.No:24 CSIR Dce-2023

The function \( f(z) = \frac{1}{(z+1)(z+3)} \) is defined on the complex plane. The coefficient of the \( (z - z_0)^2 \) term of the Laurent series of \( f(z) \) about \( z_0 = 1 \) is
1) \(\frac{7}{64}\)
2) \(\frac{7}{128}\)
3) \(\frac{9}{64}\)
4) \(\frac{9}{128}\)

Check Answer

Option 2

Q.No:25 CSIR Dce-2024

The branch line for the function \( f(z) \) is \( \sqrt{\frac{z^2-5z+6}{z^2+2z+1}} \)
Image
Option (a)
Image
Option (b)
Image
Option (c)
Image
Option (d)

Check Answer

Option 3

0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x
search previous next tag category expand menu location phone mail time cart zoom edit close