Complex Analysis JAM

Q.No:1 JAM-2015

The phase of the complex number \((1+i)i\) in the polar representation is
(A) \(\pi/4\)
(B) \(\pi/2\)
(C) \(3\pi/4\)
(D) \(5\pi/4\)

Check Answer

Option C

Q.No:2 JAM-2016

Which one of the following points represent the complex number \(\frac{1}{1-i}\) ?
Image

Check Answer

Option A

Q.No:3 JAM-2019

The value of \(|\int\limits_{0}^ {3+i}(\bar{z})^2 dz|^2\), along the line \(3y=x\), where \(z=x+iy\) is _____________.
(Round off to 1 decimal place)

Check Answer

Ans 111.0-111.2

Q.No:4 JAM-2021

One of the roots of the equation, \(z^6-3z^4-16=0\) is given by \(z_1=2\). The value of the product of the other five roots is _____________.

Check Answer

Ans (-8)

Q.No:5 JAM-2022

The equation \(z^2+\bar{z}^2=4\) in the complex plane (where \(\bar{z}\) is the complex conjugate of \(z\)) represents
(A) Ellipse
(B) Hyperbola
(C) Circle of radius 2
(D) Circle of radius 4

Check Answer

Option B

Q.No:6 JAM-2022

Consider a unit circle \(C\) in the \(xy\) plane, centered at the origin. The value of the integral \(\oint[(sin \hspace{1mm} x-y)dx- (sin \hspace{1mm} - x)dy]\) over the circle \(C\), traversed anticlockwise, is
(A) 0
(B) \(2\pi\)
(C) \(3\pi\)
(D) \(4\pi\)

Check Answer

Option B

Q.No:7 JAM-2023

The roots of the polynomial, \( f(z) = z^4 - 8z^3 + 27z^2 - 38z + 26 \), are \(z_1\), \(z_2\), \(z_3\), \& \(z_4\), where \(z\) is a complex variable. Which of the following statements is correct?
A) \(\frac{z_1 + z_2 + z_3 + z_4}{z_1z_2z_3z_4} = -\frac{4}{19}\)
B) \(\frac{z_1 + z_2 + z_3 + z_4}{z_1z_2z_3z_4} = \frac{4}{13}\)
C) \(\frac{z_1z_2z_3z_4}{z_1 + z_2 + z_3 + z_4} = -\frac{26}{27}\)
D) \(\frac{z_1z_2z_3z_4}{z_1 + z_2 + z_3 + z_4} = \frac{13}{19}\)

Check Answer

Option B

search previous next tag category expand menu location phone mail time cart zoom edit close