Complex Analysis JEST & TIFR

Q.No:1 JEST-2012

The value of the integral \(\int_{0}^{\infty} \frac{\ln{x}}{(x^2+1)^2} dx\) is
(a) \(0\)
(b) \(-\pi/4\)
(c) \(\pi/2\)
(d) \(-\pi/2\)

Check Answer

Option b

Q.No:2 JEST-2013

Compute \[ \lim_{z\to 0} \frac{\text{Re}(z^2)+\text{Im}(z^2)}{z^2}. \]
(a) The limit does not exist.
(b) \(1\)
(c) \(-i\)
(d) \(-1\)

Check Answer

Option a

Q.No:3 JEST-2014

The value of limit \[ \lim_{z\to i}\frac{z^{10}+1}{z^6+1} \] is equal to
(a) \(1\)
(b) \(0\)
(c) \(-10/3\)
(d) \(5/3\)

Check Answer

Option d

Q.No:4 JEST-2014

The value of integral \[ I=\oint_c \frac{\sin{z}}{2z-\pi} dz \] with \(c\) a circle \(|z|=2\), is
(a) \(0\)
(b) \(2\pi i\)
(c) \(\pi i\)
(d) \(-\pi i\)

Check Answer

Option c

Q.No:5 JEST-2015

Given an analytic function \(f(z)=\phi(x, y)+i\psi(x, y)\), where \(\phi(x, y)=x^2+4x-y^2+2y\). If \(C\) is a constant, which of the following relations is true?
(a) \(\psi(x, y)=x^2 y+4y+C\)
(b) \(\psi(x, y)=2xy-2x+C\)
(c) \(\psi(x, y)=2xy+4y-2x+C\)
(d) \(\psi(x, y)=x^2 y-2x+C\)

Check Answer

Option c

Q.No:6 JEST-2016

The value of the integral \(\int_{0}^{\infty} \frac{\ln{x}}{(x^2+1)}dx\) is:
(A) \(\pi^2/4\)
(B) \(\pi^2/2\)
(C) \(\pi^2\)
(D) \(0\)

Check Answer

Option D

Q.No:7 JEST-2017

Which one is the image of the complex domain \(\{z\mid xy\geq 1, x+y>0\}\) under the mapping \(f(z)=z^2\), if \(z=x+iy\)?
(A) \(\{x\mid xy\geq 1, x+y>0\}\)
(B) \(\{z\mid x\geq 2, x+y>0\}\)
(C) \(\{z\mid y\geq 2\forall x\}\)
(D) \(\{z\mid y\geq 1\forall x\}\)

Check Answer

Option C

Q.No:8 JEST-2017

The integral \(I=\int_{1}^{\infty} \frac{\sqrt{x-1}}{(1+x)^2}dx\) is
(A) \(\frac{\pi}{\sqrt{2}}\).
(B) \(\frac{\pi}{2\sqrt{2}}\).
(C) \(\frac{\sqrt{\pi}}{2}\).
(D) \(\sqrt{\frac{\pi}{2}}\).

Check Answer

Option B

Q.No:9 JEST-2018

The integral \[ \int_{-\infty}^{\infty} \frac{\cos{x}}{x^2+1}dx \] is
(A) \(\pi/e\)
(B) \(\pi e^{-2}\)
(C) \(\pi\)
(D) zero

Check Answer

Option A

Q.No:10 JEST-2019

Consider the function \(f(x, y)=|x|-i|y|\). In which domain of the complex plane is this function analytic?
(A) First and second quadrants
(B) Second and third quadrants
(C) Second and fourth quadrants
(D) Nowhere

Check Answer

Option C

Q.No:11 JEST-2020

What is the value of the following contour integral \(I\) taken counterclockwise around the circle \(|z|=2\)?\[ I=\oint_C \frac{dz}{z^3(z+4)} \]
(A) \(\frac{\pi i}{2}\)
(B) \(\frac{\pi i}{32}\)
(C) \(\frac{\pi i}{16}\)
(D) \(\frac{\pi i}{4}\)

Check Answer

Option B

Q.No:12 JEST-2022

Consider a complex function \[ f(z)=\frac{1}{6z^3+3z^2+2z+1}. \] What is the sum of the residues at its poles?
(a) \(0\)
(b) \(\frac{4}{7}\)
(c) \(\frac{2}{7}\)
(d) \(\frac{i\sqrt{3}}{7}\)

Check Answer

Option a

Q.No:13 JEST-2022

Consider a complex number \(z=x+iy\). Where do all the zeros of \(\cos{(z)}\) lie?
(a) On the \(y=0\) line.
(b) On the \(x=0\) line.
(c) On the \(x=y\) line.
(d) On the \(x=-y\) line.

Check Answer

Option a

Q.No:14 JEST-2023

Calculate the contour integral \[I=\oint_C \frac{cos^2 (z)-z^2}{(z-a)^3} dz\] where the clockwise contour \(C\) is encircling the point \(z = a\) in the complex plane.
(a) \(-(sin \hspace{1mm} 2a+1) 2\pi i\)
(b) \(-(cos \hspace{1mm} 2a+1) 2\pi i\)
(c)\((cos \hspace{1mm} 2a+1) 2\pi i\)
(d) \((sin \hspace{1mm} 2a+1) 2\pi i\)

Check Answer

Option c

Q.No:15 JEST-2023

Compute the contour integral: \[I=\oint \frac{z dz}{sinh (2 \pi z)}\] where the contour is a circle of radius \(\frac{3}{4}\) centred around the origin and the direction is counterclockwise
(a) \(0\)
(b) \(-1\)
(c) \(\pi\)
(d) \(1\)

Check Answer

Option a

Q.No:16 JEST-2024

What is the value of the integral \[ \int_{0}^{\infty} \frac{dx}{1 + x^3}? \]
(a) \( \frac{2\pi}{3\sqrt{3}} \)
(b) \( \frac{\pi}{3\sqrt{3}} \)
(c) \( \frac{2\pi}{\sqrt{3}} \)
(d) \( \frac{\pi}{3} \)

Check Answer

Option a

Q.No:17 JEST-2025

What is the value of the integral \[ I = \frac{3}{2\pi i}\oint_C \frac{dz}{1+z^2}, \] where the contour \(C\) is a circle of radius \(2\) centered at the origin?

Check Answer

ANS 0

Q.No:1 TIFR-2012

Consider the integral \[ \int_{-p^2}^{+p^2} \frac{dx}{\sqrt{x^2-p^2}} \] where \(p\) is a constant. This integral has a real, nonsingular value if
(a) \(p<-1\)
(b) \(p>1\)
(c) \(p=1\)
(d) \(p\to 0\)
(e) \(p\to \infty\)

Check Answer

Option d

Q.No:2 TIFR-2013

If \(z=x+iy\) then the function \[ f(x, y)=(1+x+y)(1+x-y)+a(x^2-y^2)-1+2iy(1-x-ax) \] where \(a\) is a real parameter, is analytic in the complex \(z\) plane if \(a=\)
(a) \(-1\)
(b) \(+1\)
(c) \(0\)
(d) \(i\)

Check Answer

Option a

Q.No:3 TIFR-2014

The integral \[ \int_0^{\infty} \frac{dx}{4+x^4} \] evaluates to
(a) \(\pi\)
(b) \(\frac{\pi}{2}\)
(c) \(\frac{\pi}{4}\)
(d) \(\frac{\pi}{8}\)

Check Answer

Option d

Q.No:4 TIFR-2015

The integral \[ \int_{0}^{2\pi} \frac{d\theta}{1-2a\cos{\theta}+a^2} \] where \(0<a<1\), evaluates to
(a) \(2\pi\)
(b) \(\frac{2\pi}{1+a^2}\)
(c) \(\frac{2\pi}{1-a^2}\)
(d) \(\frac{4\pi}{1-a^2}\)

Check Answer

Option c

Q.No:5 TIFR-2016

The value of the integral \[ \oint_C \frac{\sin{z}}{z^6} dz \] where \(C\) is the circle of centre \(z=0\) and radius \(=1\)
(a) \(i\pi\)
(b) \(i\pi/120\)
(c) \(i\pi/60\)
(d) \(-i\pi/6\)

Check Answer

Option c

Q.No:6 TIFR-2017

The value of the integral \[ \int_0^{\infty} \frac{dx}{x^4+4} \] Is
(a) \(\pi\)
(b) \(\frac{\pi}{2}\)
(c) \(\frac{\pi}{4}\)
(d) \(\frac{\pi}{8}\)

Check Answer

Option d

Q.No:7 TIFR-2018

The value of the integral \[ \frac{1}{\pi}\int_{-\infty}^{\infty} \frac{\cos{x}}{x^2+a^2} \] is
(a) \(1/2a\)
(b) \(1/2\pi a\)
(c) \(\pi a\exp{(-a)}\)
(d) \(\exp{(-a)}/a\)

Check Answer

Option d

Q.No:8 TIFR-2019

Consider the complex function \[ f(x, y)=u(x, y)+i\nu(x, y) \] where \[ \begin{array}{lll} u(x, y) &=& x^2(2+x)-y^2(2+3x) \\ \nu(x, y) &=& y(\lambda x+3x^2-y^2) \end{array} \] and \(\lambda\) is real. If it is known that \(f(x, y)\) is analytic in the complex plane of \(z=x+iy\), then it can be written
(a) \(f=z^2(2+z)\)
(b) \(f=\bar{z}(2+\bar{z}^2)\)
(c) \(f=2z\bar{z}+z^2-\bar{z}^2\)
(d) \(f=z^2+z^3\)

Check Answer

Option a

Q.No:9 TIFR-2020

The value of the integral \[ \int_0^{\infty} \frac{dx}{x^4+4} \] is
(a) \(\frac{\pi}{8}\)
(b) \(\frac{3\pi}{8}\)
(c) \(2\pi\)
(d) \(\frac{\pi}{4}\)

Check Answer

Option a

Q.No:10 TIFR-2021

How many distinct values can the following function take at a given value of \(z\)? \[ f(z)=\sqrt{\frac{z^2-1}{\sqrt{z}}}(z-i)^{1/3} \]
(a) \(12\)
(b) \(3\)
(c) \(4\)
(d) \(24\)

Check Answer

Option a

Q.No:11 TIFR-2023

A complex analytic function \(\omega=f(z)\) transforms an equilateral triangle in the complex z-plane to another equilateral triangle in the complex \(\omega\)-plane as shown in the figure.
Image
Which one of the options below \(\textbf{CANNOT}\) be \(f(z)\)?
(a) \(f(z)=2z+1\)
(b) \(f(z)=e^{5\pi i/6}z+2i\sqrt{3}\)
(c) \(f(z)=2e^{2\pi i/3}z+2+i\sqrt{3}\)
(d) \(f(z)=2 i e^{5\pi i/6}z+i\sqrt{3}\)

Check Answer

Option d

Q.No:12 TIFR-2025

(NB: Due to an ambiguity in the question all test takers will be awarded the full score.) Evaluate the integral \[ \int_{-\infty}^{+\infty} \frac{e^{-ikx}}{k^2 + 1}\, dk . \]
a) \(\pi e^{-x}\)
b) \(\pi e^{x}\)
c) \(-\pi e^{-x}\)
d) \(-\pi e^{x}\)

Check Answer

no options are correct

1 Comment
Inline Feedbacks
View all comments
kul
kul
6 months ago

14.Jest 2023 solution: happy solving🤗

IMG_20250608_192835
1
0
Would love your thoughts, please comment.x
()
x
search previous next tag category expand menu location phone mail time cart zoom edit close