DE1 & 2 JEST & TIFR

Q.No:1 JEST-2012

If \(\lfloor x \rfloor\) denotes the greatest integer not exceeding \(x\), then \(\int_{0}^{\infty} \lfloor x\rfloor e^{-x} dx\) is
(a) \(\frac{1}{e-1}\)
(b) \(1\)
(c) \(\frac{e-1}{e}\)
(d) \(\frac{e}{e^2-1}\)

Check Answer

Option a

Q.No:2 JEST-2013

A particle of mass \(m\) is thrown upward with velocity \(v\) and there is retarding air resistance proportional to the square of the velocity with proportonality constant \(k\). If the particle attains a maximum height after time \(t\), and \(g\) is the gravitational acceleration, what is the velocity \(v\)?
(a) \(\sqrt{\frac{k}{g}}\tan{\left(\sqrt{\frac{g}{k}}t\right)}\)
(b) \(\sqrt{gk}\tan{\left(\sqrt{\frac{g}{k}}t\right)}\)
(c) \(\sqrt{\frac{g}{k}}\tan{\left(\sqrt{gk}t\right)}\)
(d) \(\sqrt{gk}\tan{\left(\sqrt{gk}t\right)}\)

Check Answer

Option c

Q.No:3 JEST-2013

The operator \[ \left(\frac{d}{dx}-x\right)\left(\frac{d}{dx}+x\right) \] is equivalent to
(a) \(\frac{d^2}{dx^2}-x^2\)
(b) \(\frac{d^2}{dx^2}-x^2+1\)
(c) \(\frac{d^2}{dx^2}-x\frac{d}{dx}x^2+1\)
(d) \(\frac{d^2}{dx^2}-2x\frac{d}{dx}-x^2\)

Check Answer

Option b

Q.No:4 JEST-2013

Consider the differential equation \[ \frac{dG(x)}{dx}+kG(x)=\delta(x), \] where \(k\) is a constant. Which of the following statements is true?
(a) Both \(G(x)\) and \(G'(x)\) are continuous at \(x=0\).
(b) \(G(x)\) is continuous at \(x=0\) but \(G'(x)\) is not.
(c) \(G(x)\) is discontinuous at \(x=0\).
(d) The continuity properties of \(G(x)\) and \(G'(x)\) at \(x=0\) depend on the value of \(k\).

Check Answer

Option c

Q.No:5 JEST-2014

What are the solutions to \(f''(x)-2f'(x)+f(x)=0\)?
(a) \(c_1 e^x/x\)
(b) \(c_1 x+c_2/x\)
(c) \(c_1 xe^x+c_2\)
(d) \(c_1 e^x+c_2 xe^x\)

Check Answer

Option d

Q.No:6 JEST-2015

What is the maximum number of extrema of the function \(f(x)=P_k(x)e^{-\left(\frac{x^4}{4}+\frac{x^2}{2}\right)}\) where \(x\in (-\infty, \infty)\) and \(P_k(x)\) is an arbitrary polynomial of degree \(k\)?
(a) \(k+2\)
(b) \(k+6\)
(c) \(k+3\)
(d) \(k\)

Check Answer

Option c

Q.No:7 JEST-2015

The Bernoulli polynomials \(B_n(s)\) are defined by, \(\frac{xe^{xs}}{e^x-1}=\sum B_n(s)\frac{x^n}{n!}\). Which one of the following relations is true?
(a) \(k\)\(\frac{xe^{x(1-s)}}{e^x-1}=\sum B_n(s)\frac{x^n}{(n+1)!}\)
(b) \(\frac{xe^{x(1-s)}}{e^x-1}=\sum B_n(s)(-1)^n \frac{x^n}{(n+1)!}\)
(c) \(\frac{xe^{x(1-s)}}{e^x-1}=\sum B_n(-s)(-1)^n \frac{x^n}{n!}\)
(d) \(\frac{xe^{x(1-s)}}{e^x-1}=\sum B_n(s)(-1)^n \frac{x^n}{n!}\)

Check Answer

Option d

Q.No:8 JEST-2015

Consider the differential equation \(G'(x)+kG(x)=\delta(x)\); where \(k\) is a constant. Which following statements is true?
(a) Both \(G(x)\) and \(G'(x)\) are continuous at \(x=0\).
(b) \(G(x)\) is continuous at \(x=0\) but \(G'(x)\) is not.
(c) \(G(x)\) is discontinuous at \(x=0\).
(d) The continuity properties of \(G(x)\) and \(G'(x)\) at \(x=0\) depends on the value of \(k\).

Check Answer

Option c

Q.No:9 JEST-2016

The sum of the infinite series \(1-1/3+1/5-1/7+...\) is:
(A) \(2\pi\)
(B) \(\pi\)
(C) \(\pi/2\)
(D) \(\pi/4\)

Check Answer

Option D

Q.No:10 JEST-2016

The half-life of a radioactive nuclear source is \(9\) days. The fraction of nuclei which are left undecayed after \(3\) days is:
(A) \(7/8\)
(B) \(1/3\)
(C) \(5/6\)
(D) \(1/2^{1/3}\)

Check Answer

Option D

Q.No:11 JEST-2018

For which of the following conditions does the integral \(\int_{0}^{1} P_m(x) P_n(x)dx\) vanish for \(m\neq n\), where \(P_m(x)\) and \(P_n(x)\) are the Legendre polynomials of order \(m\) and \(n\) respectively?
(A) all \(m\), \(m\neq n\)
(B) \(m-n\) is an odd integer
(C) \(m-n\) is a nonzero even integer
(D) \(n=m\pm 1\)

Check Answer

Option C

Q.No:12 JEST-2018

If \(y(x)\) satisfies \[ \frac{dy}{dx}=y[1+(\log{y})^2] \] and \(y(0)=1\) for \(x\geq 0\), then \(y(\pi/2)\) is
(A) \(0\)
(B) \(1\)
(C) \(\pi/2\)
(D) infinity

Check Answer

Option D

Q.No:13 JEST-2019

Consider a function \(f(x)=P_k(x)e^{-(x^4+2x^2)}\) in the domain \(x\in (-\infty, \infty)\), where \(P_k\) is any polynomial of degree \(k\). What is the maximum possible number of extrema of the function?
(A) \(k+3\)
(B) \(k-3\)
(C) \(k+2\)
(D) \(k+1\)

Check Answer

Option D

Q.No:14 JEST-2019

The Euler polynomials are defined by \[ \frac{2e^{xs}}{e^x+1}=\sum_{n=0}^{\infty} E_n(s)\frac{x^n}{n!}. \] What is the value of \(E_5(2)+E_5(3)\)?

Check Answer

Ans 64

Q.No:15 JEST-2020

The solution of the differential equation \(y''-2y'-3y=e^{2t}\) is given as \(C_1 e^{-t}+C_2 e^{2t}+C_3 e^{3t}\). The values of the coefficients \(C_1, C_2\) and \(C_3\) are:
(A) \(C_1, C_2\) and \(C_3\) are arbitrary
(B) \(C_1, C_3\) are arbitrary and \(C_2=-1/3\)
(C) \(C_2, C_3\) are arbitrary and \(C_1=-1/3\)
(D) \(C_1, C_2\) are arbitrary and \(C_3=-1/3\)

Check Answer

Option B

Q.No:16 JEST-2020

A particle moving in two dimensions satisfies the equations of motion \[ \begin{array}{lll} \dot{x}(t) &=& x(t)+y(t), \\ \dot{y}(t) &=& x(t)-y(t), \end{array} \] with \(\dot{x}(0)=0\). What is the ratio of \(x(\infty)/y(\infty)\)?
(A) \(1-1/\sqrt{2}\)
(B) \(1+1/\sqrt{2}\)
(C) \(\sqrt{2}-1\)
(D) \(\sqrt{2}+1\)

Check Answer

Option D

Q.No:17 JEST-2020

Some bacteria are added to a bucket at time 10 am. The number of bacteria doubles every minute and reaches a number \(16\times 10^{15}\) at 10:18 am. How many seconds after 10 am were there \(25\times 10^{13}\) bacteria?

Check Answer

Ans 720

Q.No:18 JEST-2022

If three real variables \(x, y\) and \(z\) evolve with time \(t\) following \[ \frac{dx}{dt}=x(y-z), \frac{dy}{dt}=y(z-x), \frac{dz}{dt}=z(x-y), \] then which of the following quantities remains invariant in time?
(a) \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
(b) \(x^2+y^2+z^2\)
(c) \(xy+yz+zx\)
(d) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Check Answer

Option a

Q.No:19 JEST-2023

Solve the differential equation, \[\frac{dy}{dx}=xy+xy^2\] If \(y(x=\sqrt{2})=\frac{e}{2-e}\) where \(e\) is the base of natural logarithms, compute \(y(x = 0)\).
(a) \(-1\)
(b) \(1\)
(c) \(e\)
(d) \(0\)

Check Answer

Option b

Q.No:20 JEST-2023

If a power series \[y=\sum_{j=0} ^\infty a_j x^j\] analysis is carried out of the following differential equation \[\frac{d^y}{dx^2}+\frac{1}{x^2} \frac{dy}{dx}-\frac{4}{x^2} y =0,\] which of the following recurrence relations results?
(a) \(a_{j+1}=a_j \frac{4-j(j+1)}{j+1},\hspace{1mm} j=0,1,2,...\)
(b) \(a_{j+2}=a_j \frac{4-j(j-1)}{j+1},\hspace{1mm} j=0,1,2,...\)
(c) \(a_{j+2}=a_j \frac{4-j(j+1)}{j+1},\hspace{1mm} j=0,1,2,...\)
(d) \(a_{j+1}=a_j \frac{4-j(j-1)}{j+1},\hspace{1mm} j=0,1,2,...\)

Check Answer

Option d

Q.No:21 JEST-2024

A polynomial \( C_n(x) \) of degree \( n \) defined on the domain \( x \in [-1, 1] \) satisfies the differential equation \[ (1 - x^2) \frac{d^2C_n}{dx^2} - x \frac{dC_n}{dx} + n^2C_n = 0. \] The polynomials satisfy the orthogonality relation \[ \int_{-1}^{1} \sigma(x) C_n(x) C_m(x) dx = 0 \] for \( n \neq m \). What is \( \sigma(x) \)?
(a) \( (1 - x^2)^{-1/2} \)
(b) \( (1 - x^2) \)
(c) \( 1 \)
(d) \( \exp(-x^2) \)

Check Answer

Option a

Q.No:1 TIFR-2013

The differential equation \[ \frac{d^2 y}{dx^2}-2\frac{dy}{dx}+y=0 \] has the complete solution, in terms of arbitrary constants \(A\) and \(B\),
(a) \(A\exp{x}+Bx\exp{x}\)
(b) \(A\exp{x}+Bx\exp{(-x)}\)
(c) \(A\exp{x}+B\exp{(-x)}\)
(d) \(x\{A\exp{x}+B\exp{(-x)}\}\)

Check Answer

Option a

Q.No:2 TIFR-2014

A body of mass \(m\) falls from rest at a height \(h\) under gravity (acceleration due to gravity \(g\)) through a dense medium which provides a resistive force \(F=-k\nu^2\), where \(k\) is a constant and \(\nu\) is the speed. It will hit the ground with a kinetic energy
(a) \(\frac{m^2 g}{2k} \exp{\left(-\frac{2kh}{m}\right)}\)
(b) \(\frac{m^2 g}{2k} \tanh{\frac{2kh}{m}}\)
(c) \(\frac{m^2 g}{2k} \left\{1+\exp{\left(-\frac{2kh}{m}\right)}\right\}\)
(d) \(\frac{m^2 g}{2k} \left\{1-\exp{\left(-\frac{2kh}{m}\right)}\right\}\)

Check Answer

Option d

Q.No:3 TIFR-2015

Consider the differential equation \[ \frac{d^2 y}{dx^2}=-4\left(y+\frac{dy}{dx}\right) \] with the boundary condition that \(y(x)=0\) at \(x=1/5\). When plotted as a function of \(x\), for \(x\geq 0\), we can say \(\underline{with \hspace{2mm} certainty}\) that the value of \(y\)
(a) oscillates from positive to negative with amplitude decreasing to zero
(b) has an extremum in the range \(0<x<1\)
(c) first increases, then decreases to zero
(d) first decreases, then increases to zero

Check Answer

Option b

Q.No:4 TIFR-2015

The generating function for a set of polynomials in \(x\) is given by \[ f(x, t)=(1-2xt+t^2)^{-1} \] The third polynomial (order \(x^2\)) in this set is
(a) \(2x^2+1\)
(b) \(2x^2-x\)
(c) \(4x^2+1\)
(d) \(4x^2-1\)

Check Answer

Option d

Q.No:5 TIFR-2016

The function \(y(x)\) satisfies the differential equation \[ x\frac{dy}{dx}=y(\ln{y}-\ln{x}+1) \] with the initial condition \(y(1)=3\). What will be the value of \(y(3)\)?

Check Answer

Ans 81

Q.No:6 TIFR-2017

Write down \(x(t)\), where \(x(t)\) is the solution of the following differential equation \[ \left(\frac{d}{dt}+2\right)\left(\frac{d}{dt}+1\right)x=1, \] with the boundary conditions \[ \left.\frac{dx}{dt}\right|_{t=0}=0, x(t)|_{t=0}=-\frac{1}{2} \]

Check Answer

Ans \(\exp{(-2t)}-2\exp{(-t)}+1/2\)

Q.No:7 TIFR-2018

If \(y(x)\) satisfies the differential equation \[ y''-4y'+4y=0 \] with boundary conditions \(y(0)=1\) and \(y'(0)=0\), then \(y\left(-\frac{1}{2}\right)=\)
(a) \(\frac{2}{e}\)
(b) \(\frac{1}{2}\left(e+\frac{1}{e}\right)\)
(c) \(\frac{1}{e}\)
(d) \(-\frac{e}{2}\)

Check Answer

Option a

Q.No:8 TIFR-2019

A set of polynomials of order are given by the formula \[ P_n(x)=(-1)^n\exp{\left(\frac{x^2}{2}\right)}\frac{d^n}{dx^n}\exp{\left(-\frac{x^2}{2}\right)} \] The polynomial \(P_7(x)\) of order \(n=7\) is
(a) \(x^7-21x^5+105x^4+35x^3-105x\)
(b) \(x^6-21x^5+105x^4-105x^3+21x^2+x\)
(c) \(x^7-21x^5+105x^3-105x+21\)
(d) \(x^7-21x^5+105x^3-105x\)

Check Answer

Option d

Q.No:9 TIFR-2019

On a compact stellar object the gravity is so strong that a body falling from rest will soon acquire a velocity comparable with that of light. If the force on this body is \(F=mg\) where \(m\) is the relativistic mass and \(g\) is a constant, the velocity of this falling body will vary with time as
(a) \(\nu=\frac{c}{1-\frac{2c}{gt}}\)
(b) \(\nu=c\tanh{\frac{gt}{c}}\)
(c) \(\nu=\frac{2c}{\pi}\tan{\frac{gt}{c}}\)
(d) \(\nu=c\left\{1-\exp{\left(-\frac{gt}{c}\right)}\right\}\)

Check Answer

Option b

Q.No:10 TIFR-2020

The limit \[ \lim_{x\to \infty} x\log{\frac{x+1}{x-1}} \] evaluates to
(a) \(2\)
(b) \(0\)
(c) \(\infty\)
(d) \(1\)

Check Answer

Option a

Q.No:11 TIFR-2020

Consider the improper differential \[ ds=(1+y^2)dx+xydy \] An integrating factor for this is
(a) \(-x\)
(b) \(1+x^2\)
(c) \(xy\)
(d) \(-1+y^2\)

Check Answer

Option a

Q.No:12 TIFR-2020

The solution of the differential equation \[ \frac{dy}{dx}=1+\frac{y}{x}-\frac{y^2}{x^2} \] for \(x>0\) with the boundary condition \(y=0\) at \(x=1\), is given by \(y(x)=\)
(a) \(\frac{x(x^2-1)}{x^2+1}\)
(b) \(\frac{x(x-1)}{x+1}\)
(c) \(\frac{x-1}{x+1}\)
(d) \(\frac{x^2-1}{x^2+1}\)

Check Answer

Option a

Q.No:13 TIFR-2021

A differentiable function \(f(x)\) obeys \[ x\int_0^x \frac{f(y)}{y^2} dy=f(x) \] If \(f(1)=1\), it follows that \(f(2)=\)
(a) \(4\)
(b) \(3/4\)
(c) \(1\)
(d) \(6\)

Check Answer

Option a

Q.No:14 TIFR-2021

If \(y(x)\) satisfies the following differential equation \[ x\frac{dy}{dx}=\cot{y}-\csc{y}\cos{x} \] and we have \[ \lim_{x\to 0}y(x)=0 \] then \(y(\pi/2)=\)
(a) \(-\cos^{-1}{(2/\pi-2)}\)
(b) \(\sin^{-1}{(2/\pi)}\)
(c) \(\pi/2\)
(d) \(0\)

Check Answer

Option a

Q.No:15 TIFR-2024

Consider a universe that always expands with a scale factor \( a \) that increases with time as \( a(t) = Ct^{2/3} \) where \( C \) is a constant. Its expansion rate at time \( t \) is defined by the Hubble parameter \[ H(t) = \frac{1}{a(t)} \frac{da(t)}{dt} \] The current value of \( H(t) \) in the universe is given by \( H_0 = 975 \) km s\(^{-1}\) \(Mpc^{-1}\) where 1 Mpc = \( 3.1 \times 10^{22} \) m. What is the approximate age of this universe?
(a) \( 10^9 \) years
(b) \( 10^7 \) years
(c) \( 10^{11} \) years
(d) \( 10^{13} \) years

Check Answer

Option a

Q.No:16 TIFR-2024

Consider the following differential equations: \[ \frac{dx}{dt} = ay(t), \quad \frac{dy}{dt} = a \] where \( a \) is a positive constant. The solutions to these equations define a family of curves in the \(x, y\) plane. What are these curves?
(a) Parabolas
(b) Circles
(c) Hyperbolas
(d) Ellipses

Check Answer

Option a

Q.No:17 TIFR-2024

Consider an object falling in air. In addition to gravity, it experiences an air resistance force, \( R \), given by \( R = bv \), where \( v \) is the speed and \( b \) is a constant. If the object is dropped from rest (\( v = 0 \) at \( t = 0 \)), the distance traversed by the object at \( t = m/b \) is:
(a) \( \frac{m^2g}{b^2} \left( \frac{1}{e} \right) \)
(b) \( \frac{m^2g}{b^2} \left( 1 - \frac{1}{e} \right) \)
(c) \( \frac{m^2g}{b^2} (e - 1) \)
(d) \( \frac{m^2g}{b^2} \left( 2 - \frac{1}{e} \right) \)

Check Answer

Option a

Q.No:18 TIFR-2025

The general solution of the differential equation \[ \frac{d^3 y}{dx^3} + k^3 y = 0 \quad (k>0) \] is given by:
a) \( C_1 e^{-kx} + C_2 e^{kx/2}\cos\!\left(\frac{\sqrt{3}kx}{2}\right) + C_3 e^{kx/2}\sin\!\left(\frac{\sqrt{3}kx}{2}\right) \)
b) \( C_1 e^{-kx} + C_2 e^{-kx/2}\cos\!\left(\frac{\sqrt{3}kx}{2}\right) + C_3 e^{-kx/2}\sin\!\left(\frac{\sqrt{3}kx}{2}\right) \)
c) \( C_1 e^{-kx} + C_2 e^{kx/2}\cos\!\left(\frac{\sqrt{3}kx}{2}\right) + C_3 e^{kx/2}\sin\!\left(\frac{kx}{2}\right) \)
d) \( C_1 e^{-kx} + C_2 e^{kx/2}\cos\!\left(\frac{kx}{2}\right) + C_3 e^{kx/2}\sin\!\left(\frac{\sqrt{3}kx}{2}\right) \)

Check Answer

Option a

0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x
search previous next tag category expand menu location phone mail time cart zoom edit close