Linear Algebra JAM

Q.No:1 JAM-2015

The trace of a \(2\times 2\) matrix is 4 and its determinant is 8. If one of the eigenvalues is \(2(1+i)\), the other eigenvalue is
(A) \(2(1-i)\)
(B) \(2(1+i)\)
(C) \((1+2i)\)
(D) \((1-2i)\)

Check Answer

Option A

Q.No:2 JAM-2016

The eigenvalues of the matrix representing the following pair of linear equations \[x+iy=0\] \[ix+y=0\] are
(A) \(1+i, 1+i\)
(B) \(1-i, 1-i\)
(C) \(1, i\)
(D) \(1+i, 1-i\)

Check Answer

Option D

Q.No:3 JAM-2016

For the given set of equations: \[x+y=1\]\[y+z=1\]\[x+z=1\] which one of the following statements is correct?
(A) Equations are inconsistent.
(B) Equations are consistent and a single non-trivial solution exists.
(C) Equations are consistent and many solutions exist.
(D) Equations are consistent and only a trivial solution exists.

Check Answer

Option B

Q.No:4 JAM-2018

Let matrix \(M=\begin{pmatrix} 4&x\\ 6&9 \end{pmatrix}\). If det\((M)=0\) then,
(A) \(M\) is symmetric.
(B) \(M\) is invertible.
(C) One eigenvalue is 13.
(D) Its eigenvectors are orthogonal.

Check Answer

Option A,C,D

Q.No:5 JAM-2019

The eigenvalues of \(\begin{pmatrix} 3&i&0 \\ -i&3&0 \\ 0&0&6 \end{pmatrix}\) are
(A) \(2,4\) and \(6\)
(B) \(2i,4i\) and \(6\)
(C) \(2i,4\) and \(8\)
(D) \(0,4\) and \(8\)

Check Answer

Option A

Q.No:6 JAM-2020

If \(P\) and \(Q\) are Hermitian matrices, which of the following is/are true?
(A matrix \(P\) is Hermitian if \(P\)= \(P^\dagger\), where the elements \(P_{ij} ^\dagger =P_{ji}^*\))
(A) \(PQ + QP\) is always Hermitian
(B) \(i(PQ - QP)\) is always Hermitian
(C) \(PQ\) is always Hermitian
(D) \(PQ - QP\) is always Hermitian

Check Answer

Option A,B

Q.No:7 JAM-2021

Let \(M\) be a \(2 \times 2\) matrix. Its trace is 6 and its determinant has value 8. Its eigenvalues are
(A) 2 and 4
(B) 3 and 3
(C) 2 and 6
(D) -2 and -3

Check Answer

Option A

Q.No:8 JAM-2022

Consider the \(2 \times 2\) matrix \(M=\begin{pmatrix} 0&a\\ a&b \end{pmatrix}\)
where \(a,b>0\). Then
(A) \(M\) is a real symmetric matrix
(B) One of the eigenvalues of \(M\) is greater than \(b\)
(C) One of the eigenvalues of \(M\) is negative
(D) Product of eigenvalues of \(M\) is \(b\)

Check Answer

Option A,B,C

Q.No:9 JAM-2023

Inverse of the matrix \(\begin{pmatrix} 1&1&0\\ 2&3&0\\ 1&0&1 \end{pmatrix}\)
A) \(\begin{pmatrix} 1&-2&1\\ -1&3&0\\ 0&0&1 \end{pmatrix}\)
B) \(\begin{pmatrix} 3&-1&0\\ -2&1&0\\ -3&1&1 \end{pmatrix}\)
C) \(\begin{pmatrix} -1&-1&0\\ 2&3&0\\ 1&0&1 \end{pmatrix}\)
D) \(\begin{pmatrix} 3&-2&-3\\ -2&1&1\\ 0&0&1 \end{pmatrix}\)

Check Answer

Option B

Q.No:10 JAM-2023

The sum of the eigenvalues \(\lambda_1\) and \(\lambda_2\) of matrix \(B=I+A+A^2\), where \(A=\begin{pmatrix}2&1\\-0.5&0.5\end{pmatrix}\) is _______________ (rounded off to two decimal places).

Check Answer

Ans 7.70-7.80

Q.No:11 JAM-2024

Which of the following matrices is Hermitian as well as unitary?
A) \(\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\)
B) \(\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}\)
C) \(\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}\)
D) \(\begin{pmatrix} 0 & 1+i \\ 1-i & 0 \end{pmatrix}\)

Check Answer

Option A

Q.No:12 JAM-2025

If the system of linear equations \[ \begin{aligned} x + my + az &= 0 \\ 2x + ay + mz &= 0 \\ ax + 2y - z &= 0 \end{aligned} \] with \(m\) and \(a\) as non-zero constants, admits a non-trivial solution, then which one of the following conditions is correct?
A) \(m^2 - a^2 = 3\)
B) \(m^2 - a^2 = -3\)
C) \(a^2 - 2m^2 = -3\)
D) \(m^2 - 2a^2 = 3\)

Check Answer

Option B

search previous next tag category expand menu location phone mail time cart zoom edit close