DE1 & 2 CSIR & GATE

Q.No:1 CSIR Dec-2014

The function \(f(x)=\sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+1)!} \left(\frac{x}{2}\right)^{2n+1}\) satisfies the differential equation
(1) \(x^2 \frac{d^2 f}{dx^2}+x \frac{df}{dx}+(x^2+1)f=0\)
(2) \(x^2 \frac{d^2 f}{dx^2}+2x \frac{df}{dx}+(x^2-1)f=0\)
(3) \(x^2 \frac{d^2 f}{dx^2}+x \frac{df}{dx}+(x^2-1)f=0\)
(4) \(x^2 \frac{d^2 f}{dx^2}-x \frac{df}{dx}+(x^2-1)f=0\)

Check Answer

Option 3

Q.No:2 CSIR June-2015

Consider the differential equation \(\frac{d^2 x}{dt^2} - 3 \frac{dx}{dt} + 2x = 0\). If x = 0 at t = 0 and x = 1 at t = 1, the value of x at t = 2 is
(1) \(e^2+1\)
(2) \(e^2 +e\)
(3) \(e+2\)
(4) 2e

Check Answer

Option 2

Q.No:3 CSIR June-2015

Let \(f(x, t)\) be a solution of the wave equation are \(\frac{\partial^2 f}{\partial t^2} = v^{2} \frac{\partial^2 f}{\partial t^2}\) 1-dimension. If at \(t = 0, f (x,0) = e^{-x^2}\) and \(\frac{\partial f}{\partial t}(x,0) = 0\) for all x, then \(f(x, t)\) for all future times \(t > 0\) is described by
(1) \(e-(x^2-v^{2}t^{2})\)
(2) \(e^{-(x-vt)^{2}}\)
(3) \(\frac{1}{4} e^{-(x - vt)^{2}} + \frac{3}{4} e^{-(x + vt)^{2}}\)
(4) \(\frac{1}{2} [e^{-(x - vt)^{2}} + e^{-(x + vt)^{2}}]\)

Check Answer

Option 4

Q.No:4 CSIR Dec-2015

If \(y=\frac{1}{\tanh{(x)}}\), then \(x\) is
(1) \(\ln{\left(\frac{y+1}{y-1}\right)}\)
(2) \(\ln{\left(\frac{y-1}{y+1}\right)}\)
(3) \(\ln{\sqrt{\frac{y-1}{y+1}}}\)
(4) \(\ln{\sqrt{\frac{y+1}{y-1}}}\)

Check Answer

Option 4

Q.No:5 CSIR Dec-2015

The solution of the differential equation \(\frac{dx}{dt}=2\sqrt{1-x^2}\), with initial condition \(x=0\) at \(t=0\) is
(1) \(x=\left\{\begin{array}{cc}\sin{2t}, & 0\leq t< \frac{\pi}{4}\\ \sinh{2t}, & t\geq \frac{\pi}{4}\end{array}\right.\)
(2) \(x=\left\{\begin{array}{cc}\sin{2t}, & 0\leq t< \frac{\pi}{2}\\ 1, & t\geq \frac{\pi}{2}\end{array}\right.\)
(3) \(x=\left\{\begin{array}{cc}\sin{2t}, & 0\leq t< \frac{\pi}{4}\\ 1, & t\geq \frac{\pi}{4}\end{array}\right.\)
(4) \(x=1-\cos{2t}, t\geq 0\)

Check Answer

Option 3

Q.No:6 CSIR Dec-2015

The Hermite polynomial \(H_n(x)\) satisfies the differential equation \[ \frac{d^2 H_n}{dx^2}-2x\frac{dH_n}{dx}+2nH_n(x)=0. \] The corresponding generating function \(G(t, x)=\sum_{n=0}^{\infty} \frac{1}{n!} H_n(x)t^n\) satisfies the equation
(1) \(\frac{\partial^2 G}{\partial x^2}-2x\frac{\partial G}{\partial x}+2t\frac{\partial G}{\partial t}=0\)
(2) \(\frac{\partial^2 G}{\partial x^2}-2x\frac{\partial G}{\partial x}-2t^2\frac{\partial G}{\partial t}=0\)
(3) \(\frac{\partial^2 G}{\partial x^2}-2x\frac{\partial G}{\partial x}+2\frac{\partial G}{\partial t}=0\)
(4) \(\frac{\partial^2 G}{\partial x^2}-2x\frac{\partial G}{\partial x}+2\frac{\partial^2 G}{\partial x \partial t}=0\)

Check Answer

Option 1

Q.No:7 CSIR Dec-2015

For a dynamical system governed by the equation \(\frac{dx}{dt}=2\sqrt{1-x^2}\), with \(|x|\leq 1\),
(1) \(x=-1\) and \(x=1\) are both unstable fixed points
(2) \(x=-1\) and \(x=1\) are both stable fixed points
(3) \(x=-1\) is an unstable fixed point and \(x=1\) is a stable fixed point
(4) \(x=-1\) is a stable fixed point and \(x=1\) is an unstable fixed point

Check Answer

Option 3

Q.No:8 CSIR June-2016

The integral equation \(\phi(x, t)=\lambda \int dx' dt' \int \frac{d\omega dk}{(2\pi)^2} \frac{e^{-ik(x-x')+i\omega(t-t')}}{\omega^2-k^2-m^2+i\epsilon} \phi^3(x', t')\) is equivalent to the differential equation
(1) \(\left(\frac{\partial^2}{\partial t^2}+\frac{\partial^2}{\partial x^2}-m^2+i\epsilon\right)\phi(x, t)=-\frac{1}{6} \lambda \phi^3(x, t)\)
(2) \(\left(\frac{\partial^2}{\partial t^2}-\frac{\partial^2}{\partial x^2}+m^2-i\epsilon\right)\phi(x, t)=\lambda \phi^2(x, t)\)
(3) \(\left(\frac{\partial^2}{\partial t^2}-\frac{\partial^2}{\partial x^2}+m^2-i\epsilon\right)\phi(x, t)=-3 \lambda \phi^2(x, t)\)
(4) \(\left(\frac{\partial^2}{\partial t^2}-\frac{\partial^2}{\partial x^2}+m^2-i\epsilon\right)\phi(x, t)=-\lambda \phi^3(x, t)\)

Check Answer

Option 4

Q.No:9 CSIR June-2016

A radioactive element \(X\) decays to \(Y\), which in turn decays to a stable element \(Z\). The decay constant from \(X\) to \(Y\) is \(\lambda_1\), and that from \(Y\) to \(Z\) is \(\lambda_2\). If, to begin with, there are only \(N_0\) atoms of \(X\), at {\bf short} times (\(t\ll 1/\lambda_1\) as well as \(1/\lambda_2\)) the number of atoms of \(Z\) will be
(1) \(\frac{1}{2}\lambda_1 \lambda_2 N_0 t^2\)
(2) \(\frac{\lambda_1 \lambda_2}{2(\lambda_1+\lambda_2)} N_0 t\)
(3) \((\lambda_1+\lambda_2)^2 N_0 t^2\)
(4) \((\lambda_1+\lambda_2) N_0 t\)

Check Answer

Option 1

Q.No:10 CSIR Dec-2016

Consider two radioactive atoms, each of which has a decay rate of \(1\) per year. The probability that at least one of them decays in the first two years is
(1) \(\frac{1}{4}\)
(2) \(\frac{3}{4}\)
(3) \(1-e^{-4}\)
(4) \((1-e^{-2})^2\)

Check Answer

Option 3

Q.No:11 CSIR Dec-2016

A ball of mass \(m\) is dropped from a tall building with zero initial velocity. In addition to gravity, the ball experiences a damping force of the form \(-\gamma v\), where \(v\) is its instantaneous velocity and \(\gamma\) is a constant. Given the values \(m=10 kg, \gamma=10 kg/s\), and \(g\approx 10 m/s^2\), the distance travelled (in metres) in time \(t\) in seconds, is
(1) \(10(t+1-e^{-t})\)
(2) \(10(t-1+e^{-t})\)
(3) \(5t^2-(1-e^t)\)
(4) \(5t^2\)

Check Answer

Option 2

Q.No:12 CSIR Dec-2016

Let \(f(x, t)\) be a solution of the heat equation \(\frac{\partial f}{\partial t}=D \frac{\partial^2 f}{\partial x^2}\) in one dimension. The initial condition at \(t=0\) is \(f(x, 0)=e^{-x^2}\) for \(-\infty< x0\), \(f(x, t)\) is given by [Useful integral: \(\int_{-\infty}^{\infty} dx e^{-\alpha x^2}=\sqrt{\pi/\alpha}\).]
(1) \(\frac{1}{\sqrt{1+Dt}}e^{-\frac{x^2}{1+Dt}}\)
(2) \(\frac{1}{\sqrt{1+2Dt}}e^{-\frac{x^2}{1+2Dt}}\)
(3) \(\frac{1}{\sqrt{1+4Dt}}e^{-\frac{x^2}{1+4Dt}}\)
(4) \(e^{-\frac{x^2}{1+Dt}}\)

Check Answer

Option 3

Q.No:13 CSIR June-2017

The function \(y(x)\) satisfies the differential equation \(x\frac{dy}{dx}+2y=\frac{\cos{\pi x}}{x}\). If \(y(1)=1\), the value of \(y(2)\) is
(1) \(\pi\)
(2) \(1\)
(3) \(1/2\)
(4) \(1/4\)

Check Answer

Option 4

Q.No:14 CSIR June-2017

The Green's function satisfying \[ \frac{d^2}{dx^2} g(x, x_0)=\delta(x-x_0) \] with the boundary conditions \(g(-L, x_0)=0=g(L, x_0)\), is
(1) \(\left\{\begin{array}{ll}\frac{1}{2L}(x_0-L)(x+L), & -L\leq x< x_0 \\ \frac{1}{2L}(x_0+L)(x-L), & x_0\leq x\leq L \end{array}\right.\)
(2) \(\left\{\begin{array}{ll}\frac{1}{2L}(x_0+L)(x+L), & -L\leq x< x_0 \\ \frac{1}{2L}(x_0-L)(x-L), & x_0\leq x\leq L \end{array}\right.\)
(3) \(\left\{\begin{array}{ll}\frac{1}{2L}(L-x_0)(x+L), & -L\leq x< x_0 \\ \frac{1}{2L}(x_0+L)(L-x), & x_0\leq x\leq L \end{array}\right.\)
(4) \(\frac{1}{2L}(x-L)(x+L), -L\leq x\leq L\)

Check Answer

Option 1

Q.No:15 CSIR Dec-2017

The number of linearly independent power series solutions, around \(x=0\), of the second order linear differential equation \(x\frac{d^2 y}{dx^2}+\frac{dy}{dx}+xy=0\), is
(1) \(0\) (this equation does not have a power series solution)
(2) \(1\)
(3) \(2\)
(4) \(3\)

Check Answer

Option 2

Q.No:16 CSIR Dec-2017

The generating function \(G(t, x)\) for the Legendre polynomials \(P_n(t)\) is \[ G(t, x)=\frac{1}{\sqrt{1-2xt+x^2}}=\sum_{n=0}^{\infty} x^n P_n(t), \text{ for }|x|<1. \] If the function \(f(x)\) is defined by the integral equation \(\int_{0}^{x}f(x')dx'=x G(1, x)\), it can be expressed as
(1) \(\sum_{n, m=0}^{\infty} x^{n+m} P_n(1) P_m\left(\frac{1}{2}\right)\)
(2) \(\sum_{n, m=0}^{\infty} x^{n+m} P_n(1) P_m(1)\)
(3) \(\sum_{n, m=0}^{\infty} x^{n-m} P_n(1) P_m(1)\)
(4) \(\sum_{n, m=0}^{\infty} x^{n-m} P_n(0) P_m(1)\)

Check Answer

Option 2

Q.No:17 CSIR June-2018

Consider the following ordinary differential equation \[ \frac{d^2 x}{dt^2}+\frac{1}{x}\left(\frac{dx}{dt}\right)^2-\frac{dx}{dt}=0 \] with the boundary conditions \(x(t=0)=0\) and \(x(t=1)=1\). The value of \(x(t)\) at \(t=2\) is
(1) \(\sqrt{e-1}\)
(2) \(\sqrt{e^2+1}\)
(3) \(\sqrt{e+1}\)
(4) \(\sqrt{e^2-1}\)

Check Answer

Option 3

Q.No:18 CSIR June-2018

In the function \(P_n(x)e^{-x^2}\) of a real variable \(x\), \(P_n(x)\) is a polynomial of degree \(n\). The maximum number of extrema that this function can have is
(1) \(n+2\)
(2) \(n-1\)
(3) \(n+1\)
(4) \(n\)

Check Answer

Option 3

Q.No:19 CSIR June-2018

The Green's function \(G(x, x')\) for the equation \(\frac{d^2 y(x)}{dx^2}+y(x)=f(x)\), with the boundary values \(y(0)=y\left(\frac{\pi}{2}\right)=0\), is
(1) \(G(x, x')=\left\{\begin{array}{ll}x\left(x'-\frac{\pi}{2}\right), & 0< x< x'< \frac{\pi}{2} \\ \left(x-\frac{\pi}{2}\right)x', & 0< x'< x< \frac{\pi}{2} \end{array}\right.\)
(2) \(G(x, x')=\left\{\begin{array}{ll}-\cos{x'}\sin{x}, & 0< x< x'< \frac{\pi}{2} \\ -\sin{x'}\cos{x}, & 0< x'< x< \frac{\pi}{2} \end{array}\right.\)
(3) \(G(x, x')=\left\{\begin{array}{ll}\cos{x'}\sin{x}, & 0< x< x'< \frac{\pi}{2} \\ \sin{x'}\cos{x}, & 0< x'< x< \frac{\pi}{2} \end{array}\right.\)
(4) \(G(x, x')=\left\{\begin{array}{ll}x\left(\frac{\pi}{2}-x'\right), & 0< x< x'< \frac{\pi}{2} \\ x'\left(\frac{\pi}{2}-x\right), & 0< x'< x< \frac{\pi}{2} \end{array}\right.\)

Check Answer

Option 2

Q.No:20 CSIR Dec-2018

The polynomial \(f(x)=1+5x+3x^2\) is written as a linear combination of the Legendre polynomials (\(P_0(x)=1, P_1(x)=x, P_2(x)=\frac{1}{2}(3x^2-1)\)) as \(f(x)=\sum_n c_n P_n(x)\). The value of \(c_0\) is
(1) \(1/4\)
(2) \(1/2\)
(3) \(2\)
(4) \(4\)

Check Answer

Option 3

Q.No:21 CSIR Dec-2018

A particle of mass \(m\), moving along the \(x\)-direction, experiences a damping force \(-\gamma v^2\), where \(\gamma\) is a constant and \(v\) is its instantaneous speed. If the speed at \(t=0\) is \(v_0\), the speed at time \(t\) is
(1) \(v_0 e^{-\frac{\gamma v_0 t}{m}}\)
(2) \(\frac{v_0}{1+\ln{\left(1+\frac{\gamma v_0 t}{m}\right)}}\)
(3) \(\frac{mv_0}{m+\gamma v_0 t}\)
(4) \(\frac{2v_0}{1+e^{\frac{\gamma v_0 t}{m}}}\)

Check Answer

Option 3

Q.No:22 CSIR Dec-2018

In terms of arbitrary constants \(A\) and \(B\), the general solution to the differential equation \(x^2 \frac{d^2 y}{dx^2}+5x\frac{dy}{dx}+3y=0\) is
(1) \(y=\frac{A}{x}+Bx^3\)
(2) \(y=Ax+\frac{B}{x^3}\)
(3) \(y=Ax+Bx^3\)
(4) \(y=\frac{A}{x}+\frac{B}{x^3}\)

Check Answer

Option 4

Q.No:23 CSIR Dec-2018

The Green's function \(G(x, x')\) for the equation \(\frac{d^2 y(x)}{dx^2}=f(x)\), with the boundary values \(y(0)=0\) and \(y(1)=0\), is
(1) \(G(x, x')=\left\{\begin{array}{ll}\frac{1}{2}x(1-x'), & 0< x< x'< 1 \\ \frac{1}{2}x'(1-x), & 0< x'< x< 1 \end{array}\right.\)
(2) \(G(x, x')=\left\{\begin{array}{ll}x(x'-1), & 0< x< x'< 1 \\ x'(1-x), & 0< x'< x< 1 \end{array}\right.\)
(3) \(G(x, x')=\left\{\begin{array}{ll}-\frac{1}{2}x(1-x'), & 0< x< x'< 1 \\ \frac{1}{2}x'(1-x), & 0< x'< x< 1 \end{array}\right.\)
(4) \(G(x, x')=\left\{\begin{array}{ll}x(x'-1), & 0< x< x'< 1 \\ x'(x-1), & 0< x'< x< 1 \end{array}\right.\)

Check Answer

Option 4

Q.No:24 CSIR June-2019

The solution of the differential equation \(x\frac{dy}{dx}+(1+x)y=e^{-x}\) with the boundary condition \(y(x=1)=0\), is
(1) \(\frac{(x-1)}{x}e^{-x}\)
(2) \(\frac{(x-1)}{x^2}e^{-x}\)
(3) \(\frac{(1-x)}{x^2}e^{-x}\)
(4) \((x-1)^2 e^{-x}\)

Check Answer

Option 1

Q.No:25 CSIR June-2019

The time evolution of a coordinate \(x\) of a particle is described by the equation \[ \frac{d^4 x}{dt^4}+2\Omega^2 \frac{d^2 x}{dt^2}+(\Omega^4-A^4)x=0 \] For \(\Omega> A\), the particle will
(1) eventually come to rest at the origin
(2) eventually drift to infinity (\(|x|\to \infty\))
(3) oscillate about the origin
(4) eventually come to rest at \(\Omega/A\) or \(-\Omega/A\)

Check Answer

Option 3

Q.No:26 Assam CSIR Dec-2019

The Green's function \(G(x, x_0)\) for the boundary value problem \(\frac{d^2 y}{dx^2}+2\frac{dy}{dx}=f(x)\) in \(x\geq 0\), with the boundary conditions \(y(0)=\frac{dy}{dx}(0)=0\), is
(1) \(\left\{\begin{array}{ll}0 & \text{for }0\leq x\leq x_0 \\ \frac{1}{2}(1-e^{2(x_0-x)}) & \text{for }x>x_0 \end{array}\right.\)
(2) \(\left\{\begin{array}{ll}0 & \text{for }0\leq x\leq x_0 \\ \frac{1}{2}(1-e^{2(x-x_0)}) & \text{for }x>x_0 \end{array}\right.\)
(3) \(\left\{\begin{array}{ll}\frac{1}{2}(1-e^{2(x-x_0)}) & \text{for }0\leq x\leq x_0 \\ \frac{1}{2}(1-e^{2(x_0-x)}) & \text{for }x>x_0 \end{array}\right.\)
(4) \(\left\{\begin{array}{ll}\frac{1}{2}(1+e^{2(x-x_0)}) & \text{for }0\leq x\leq x_0 \\ \frac{1}{2}(1-e^{2(x_0-x)}) & \text{for }x>x_0 \end{array}\right.\)

Check Answer

Option 1

Q.No:27 CSIR June-2020

The Green's function for the differential equation \(\frac{d^2 x}{dt^2}+x=f(t)\), satisfying the initial conditions \(x(0)=\frac{dx}{dt}(0)=0\) is \[ G(t, \tau)= \left\{ \begin{array}{ll} 0 & \text{for }0<t\tau \end{array} \right. \] The solution of the differential equation when the source \(f(t)=\theta(t)\) (the Heaviside step function) is
(a) \(\sin{t}\)
(b) \(1-\sin{t}\)
(c) \(1-\cos{t}\)
(d) \(\cos^2{t}-1\)

Check Answer

Option c

Q.No:28 CSIR June-2020

The solution of the differential equation \(\left(\frac{dy}{dx}\right)^2-\frac{d^2 y}{dx^2}=e^y\), with the boundary conditions \(y(0)=0\) and \(y'(0)=-1\), is
(a) \(-\ln{\left(\frac{x^2}{2}+x+1\right)}\)
(b) \(-x\ln{(e+x)}\)
(c) \(-xe^{-x^2}\)
(d) \(-x(x+1)e^{-x}\)

Check Answer

Option a

Q.No:29 CSIR Feb-2022

The equation of motion of a one-dimensional forced harmonic oscillator in the presence of a dissipative force is described by
\(\frac{d^2x}{dt^2}+10\frac{dx}{dt}+16x=6te^{-8t}+4t^2e^{-2t}\) . The general form of the particular solution, in terms of constants \(A, B\) etc ., is
(1) \(t(At^2+Bt+C)e^{-2t}+(Dt+E)e^{-8t}\)
(2) \((At^2+Bt+C)e^{-2t}+(Dt+E)e^{-8t}\)
(3) \(t(At^2+Bt+C)e^{-2t}+t(Dt+E)e^{-8t}\)
(4) \((At^2+Bt+C)e^{-2t}+t(Dt+E)e^{-8t}\)

Check Answer

Option 3

Q.No:30 CSIR Feb-2022

The fulcrum of a simple pendulum (consisting of a particle of mass m attached to the support by a mass less string of length \(l\) oscillates vertically as \(sin(zt)=a \hspace{1mm} sin(\omega t)\), where \(\omega\) is a constant. The pendulum moves in a vertical plane and \(\theta(t)\) denotes its angular position with respect to the z -axis
Image
If \(l\frac{d^2\theta}{dt^2}+sin\theta(g-f(t))=0\)(where g is the acceleration due to gravity) describes the equation of motion of the mass, then \(f(t)\) is
(1) \(a\omega^2 \hspace{1mm}cos\omega t\)
(2) \(a\omega^2 \hspace{1mm}sin\omega t\)
(3) \(-a\omega^2 \hspace{1mm}cos\omega t\)
(4) \(-a\omega^2 \hspace{1mm}sin\omega t\)

Check Answer

Option

Q.No:31 CSIR Feb-2022

The Legendre polynomials \(P_n(x),n=0,1,2,....\), satisfying the orthogonality condition \(\int_{-1}^1P_n(x) P_m(x) dx=\frac{2}{2n+1}\delta_{nm}\) on the interval \([-1,+1]\), may be defined by the Rodrigues formula \(P_n(x)=\frac{1}{2^n n!}\frac{d^n}{dx^n}(x^2-1)^n\). The value of the definite integral \(\int_{-1}^1(4+2x-3x^2+4x^3)P_3(x)dx\) is
(1) \(3/5\)
(2) \(11/15\)
(3) \(23/32\)
(4) \(16/35\)

Check Answer

Option 4

Q.No:32 CSIR Feb-2022

If we use the Fourier transform \(\phi(x,y)=\int e^{ikx}\phi_k(y)dk\) to solve the partial differential equation \(-\frac{\partial^2\phi(x,y)}{\partial y^2}-\frac{1}{y^2}\frac{\partial^2\phi(x,y)}{\partial x^2}+\frac{m^2}{y^2}\phi(x,y)=0\) in the half-plane \(\{(x,y):-\infty<x<\infty ,0<y<\infty\}\) , the Fourier modes \(\phi_k(y)\) depend on \(y\) as \(y^\alpha\) and \(y^\beta\) . The value of \(\alpha\) and \(\beta\) are
(1) \(\frac{1}{2}+\sqrt{1+4(k^2+m^2)}\) and \(\frac{1}{2}-\sqrt{1+4(k^2+m^2)}\)
(2) \(1+\sqrt{1+4(k^2+m^2)}\) and \(1-\sqrt{1+4(k^2+m^2)}\)
(3) \(\frac{1}{2}+\frac{1}{2}\sqrt{1+4(k^2+m^2)}\) and \(\frac{1}{2}-\frac{1}{2}\sqrt{1+4(k^2+m^2)}\)
(4) \(1+\frac{1}{2}\sqrt{1+4(k^2+m^2)}\) and \(1-\frac{1}{2}\sqrt{1+4(k^2+m^2)}\)

Check Answer

Option 3

Q.No:33 CSIR June-2023

If the Bessel function of integer order \(n\) is defined as \(J_n(x)=\sum_{k=0}^\infty\frac{(-1)^k}{k!(n+k)!}(\frac{x}{2})^{2k+n}\) then \(\frac{d}{dx}[x^{-n} J_n(x)]\) is
1) \(-x^{-(n+1)}J_{n+1}(x)\)
2) \(-x^{-(n+1)}J_{n-1}(x)\)
3) \(-x^{-n}J_{n-1}(x)\)
4) \(-x^{-n}J_{n-1}(x)\)

Check Answer

Option 4

Q.No:34 CSIR June-2023

A layer of ice has formed on a very deep lake. The temperature of water, as well as that of ice at the ice-water interface, are \(0^0C\), whereas the temperature of the air above is \(-10^0C\). The thickness \(L(t)\) of the ice increases with time \(t\). Assuming that all physical properties of air and ice are independent of temperature, \(L(t)\sim L_0t^\alpha\) for large \(t\). The value of \(\alpha\) is
1) \(1/4\)
2) \(1/3\)
3) \(1/2\)
4) \(1\)

Check Answer

Option 3

Q.No:35 CSIR Dec-2023

The solution \( y(x) \) of the differential equation \( y'' + \frac{y}{4} = \frac{x}{2} \), where \( 0 \leq x \leq \pi \), together with the boundary conditions \( y(0) = y(\pi) = 0 \) is
1) \( \frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^n \frac{\pi}{n} \frac{\sin nx}{\frac{1}{4}-n^2} \)
2) \( \frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^n \frac{\pi}{2n} \frac{\sin nx}{\frac{1}{4}-n^2} \)
3) \( \frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\pi}{n}\frac{\sin nx}{\frac{1}{4}-n^2} \)
4) \( \frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\pi}{2n} \frac{\sin nx}{\frac{1}{4}-n^2} \)

Check Answer

Option 4

Q.No:36 CSIR June-2024

The general solution for the second-order differential equation \[ \frac{d^2 y}{dx^2} - y = x \sin x \] will be:
1) \( C_1 e^x + C_2 e^{-x} - \frac{1}{2}(x \sin x + \cos x) \)
2) \( C_1 e^x + C_2 e^{-x} + \frac{1}{2} (x \sin x - \cos x) \)
3) \( C_1 e^x + C_2 e^{-x} + \frac{1}{2} x (\sin x - \cos x) \)
4) \( C_1 e^x + C_2 e^{-x} + \frac{1}{2} x (\sin x + \cos x) \)

Check Answer

Option 1

Q.No:37 CSIR June-2025

The solutions of the differential equation \[ \frac{dy}{dx} = -\frac{x}{y+1} \] are a family of
1) ellipses with different eccentricities
2) circles with different centres
3) circles with different radii
4) ellipses with different foci

Check Answer

Option 3

Q.No:38 CSIR June-2025

Let \(P_n(x)\) be a polynomial of degree \(n\) with real coefficients, where \(n = 0,1,2,3,\ldots\). If \[ \int_{2}^{4} P_n(x)\,P_m(x)\,dx = \delta_{mn}, \] then \(P_1(x)\) is
1) \(\pm \sqrt{\frac{3}{2}}\, (3 - x)\)
2) \(\pm \sqrt{\frac{3}{2}}\, (2 - x)\)
3) \(\pm \sqrt{\frac{3}{2}}\, (1 - x)\)
4) \(\pm \sqrt{3}\, (3 + x)\)

Check Answer

Option 1

Q.No:39 CSIR June-2025

Which one of the following curves best represents the solution of the differential equation \[ \frac{dx}{dt} + x = 1, \] with the initial condition \(x(0)=0\)?
Image
1)
Image
2)
Image
3)
Image
4)

Check Answer

Option 1

Q.No:1 GATE-2014

The solution of the differential equation \[ \frac{d^2 y}{dt^2}-y=0, \] subject to the boundary conditions \(y(0)=1\) and \(y(\infty)=0\), is
(A) \(\cos{t}+\sin{t}\)
(B) \(\cosh{t}+\sinh{t}\)
(C) \(\cos{t}-\sin{t}\)
(D) \(\cosh{t}-\sinh{t}\)

Check Answer

Option D

Q.No:2 GATE-2015

If \(f(x)=e^{-x^2}\) and \(g(x)=|x| e^{-x^2}\), then
(A) \(f\) and \(g\) are differentiable everywhere
(B) \(f\) is differentiable everywhere but \(g\) is not
(C) \(g\) is differentiable everywhere but \(f\) is not
(D) \(g\) is discontinuous at \(x=0\)

Check Answer

Option B

Q.No:3 GATE-2015

A particle of mass \(0.01 kg\) falls freely in the earth's gravitational field with an initial velocity \(\nu(0)=10 ms^{-1}\). If the air exerts a frictional force of the form, \(f=-k\nu\), then for \(k=0.05 Nm^{-1}s\), the velocity (in \(ms^{-1}\)) at time \(t=0.2 s\) is ______________ (upto two decimal places) (use \(g=10 ms^{-2}\) and \(e=2.72\))

Check Answer

Ans 4.93-4.98

Q.No:4 GATE-2015

A function \(y(z)\) satisfies the ordinary differential equation \(y''+\frac{1}{z}y'-\frac{m^2}{z^2}y=0\), where \(m=0, 1, 2, 3, ...\). Consider the four statements P, Q, R, S as given below. P: \(z^m\) and \(z^{-m}\) are linearly independent solutions for all values of \(m\) Q: \(z^m\) and \(z^{-m}\) are linearly independent solutions for all values of \(m>0\) R: \(\ln{z}\) and \(1\) are linearly independent solutions for \(m=0\) S: \(z^m\) and \(\ln{z}\) are linearly independent solutions for all values of \(m\) The correct option for the combinational of valid statements is
(A) P, R and S only
(B) P and R only
(C) Q and R only
(D) R and S only

Check Answer

Option C

Q.No:5 GATE-2016

Consider the linear differential equation \(\frac{dy}{dx}=xy\). If \(y=2\) at \(x=0\), then the value of \(y\) at \(x=2\) is given by
(A) \(e^{-2}\)
(B) \(2e^{-2}\)
(C) \(e^2\)
(D) \(2e^2\)

Check Answer

Option D

Q.No:6 GATE-2017

Consider the differential equation \(dy/dx+y\tan{(x)}=\cos{(x)}\). If \(y(0)=0\), \(y(\pi/3)\) is ____________. (up to two decimal places).

Check Answer

Ans 0.51-0.53

Q.No:7 GATE-2018

Given \[ \frac{d^2 f(x)}{dx^2}-2\frac{df(x)}{dx}+f(x)=0, \] and boundary conditions \(f(0)=1\) and \(f(1)=0\), the value of \(f(0.5)\) is ________________ (up to two decimal places).

Check Answer

Ans 0.81-0.84

Q.No:8 GATE-2019

For the differential equation \(\frac{d^2 y}{dx^2}-n(n+1)\frac{y}{x^2}=0\), where \(n\) is a constant, the product of its two independent solutions is
(A) \(\frac{1}{x}\)
(B) \(x\)
(C) \(x^n\)
(D) \(\frac{1}{x^{n+1}}\)

Check Answer

Option B

Q.No:9 GATE-2020

Which one of the following is a solution of \(\frac{d^2 u(x)}{dx^2}=k^2 u(x)\), for \(k\) real?
(A) \(e^{-kx}\)
(B) \(\sin{kx}\)
(C) \(\cos{kx}\)
(D) \(\sinh{x}\)

Check Answer

Option A

Q.No:10 GATE-2020

Let \( f_n(x)=\left\{ \begin{array}{ll} 0, & x<-\frac{1}{2n} \\ n, & -\frac{1}{2n}<x<\frac{1}{2n} \\ 0, & \frac{1}{2n}<x. \end{array} \right. \) The value of \(\lim_{n\to \infty} \int_{-\infty}^{\infty} f_n(x)\sin{x} dx\) is ___________.

Check Answer

Ans 0

Q.No:11 GATE-2021

If \(y_n(x)\) is solution of the differential equation \[ y''-2xy'+2ny=0 \] where \(n\) is an integer and the prime (') denotes differentiation with respect to \(x\), then acceptable plot(s) of \(\psi_n(x)=e^{-x^2/2}y_n(x)\), is(are)
Image
(A)
Image
(B)
Image
(C)
Image
(D)

Check Answer

Option B-C

Q.No:12 GATE-2022

Consider the ordinary differential equation \[ y''-2xy'+4y=0 \] and its solution \(y(x)=a+bx+cx^2\). Then
(a) \(a=0, c=-2b\neq 0\)
(b) \(c=-2a\neq 0, b=0\)
(c) \(b=-2a\neq 0, c=0\)
(d) \(c=2a\neq 0, b=0\)

Check Answer

Option b

Q.No:13 GATE-2022

The ordinary differential equation \[ (1-x^2)y''-xy'+9y=0 \] has a regular singularity at
(a) \(-1\)
(b) \(0\)
(c) \(+1\)
(d) no finite value of \(x\)

Check Answer

Option a,c

Q.No:14 GATE-2024

The equation of motion for the forced simple harmonic oscillator is \[ \ddot{x}(t) + \omega^2 x(t) = F \cos(\omega t) \] where \(x(t = 0) = 0\) and \(\dot{x}(t = 0) = 0\). Which one of the following options is correct?
(A) \(x(t) \propto t \sin(\omega t)\)
(B) \(x(t) \propto t \cos(\omega t)\)
(C) \(x(t) = \infty\)
(D) \(x(t) \propto e^{\omega t}\)

Check Answer

Option A

2 Comments
Inline Feedbacks
View all comments
2
0
Would love your thoughts, please comment.x
()
x
search previous next tag category expand menu location phone mail time cart zoom edit close