Others JAM

Q.No:1 JAM-2015

Consider the coordinate transformation \(x'=\frac{x+y}{\sqrt{2}}, y'=\frac{x-y}{\sqrt{2}}\). The relation between the area elements \(dx'dy'\) and \(dxdy\) is given by \(dx'dy'=J\hspace{0.5mm}dxdy\). The value of \(J\) is
(A) \(2\)
(B) \(1\)
(C) \(-1\)
(D) \(-2\)

Check Answer

Option C

Q.No:2 JAM-2016

Consider a function \(f(x,y)=x^3+y^3\), where \(y\) represents a parabolic curve \(x^2+1\). The total derivative of \(f\) with respect to \(x\), at \(x=1\) is ___________.

Check Answer

Ans 27

Q.No:3 JAM-2016

A rectangular area \((A_1)\) is formed by two vectors \(\vec{x}\) and \(\vec{y}\) as shown in figure (i). A new set of vectors, representing the area \((A_2)\) as shown in figure (ii), are given as: \(\vec{u_1}=\vec{x}\) ; \(\vec{u_2}=k\vec{x}+\vec{y}\), where \(k\) is a dimensionless constant.
Image
The Jacobian of the frame \((\vec{u_1},\vec{u_2})\) with respect to \((\vec{x},\vec{y})\) is _________________.

Check Answer

Ans 1

Q.No:4 JAM-2017

Which one of the following graphs represents the derivative \(f'(x)=\frac{df}{dx}\) of the function \(f(x)=\frac{1}{1+x^2}\) most closely (graphs are schematic and not drawn to scale)?
Image

Check Answer

Option A

Q.No:5 JAM-2018

Consider the transformation to a new set of coordinates \(\xi ,\eta\) from rectangular Cartesian coordinates (x, y), where \(\xi=2x+3y\) and \(\eta = 3x-2y\). In the \(\xi ,\eta\) coordinate system, the area element \(dxdy\) is
(A) \(\frac{1}{13}d \xi d\eta\)
(B) \(\frac{2}{13}d \xi d\eta\)
(C) \(5d \xi d\eta\)
(D) \(\frac{3}{5}d \xi d\eta\)

Check Answer

Option A

Q.No:6 JAM-2018

Let \(f(x)=3x^6-2x^2-8\). Which of the following statements is (are) true?
(A) The sum of all its roots is zero.
(B) The product of its roots is \(-\frac{8}{3}\)
(C) The sum of all its roots is \(\frac{2}{3}\)
(D) Complex roots are conjugates of each other.

Check Answer

Option A,B,D

Q.No:7 JAM-2018

The coefficient of \(x^3\) in the Taylor expansion of sin(sin x) around \(x=0\) is _________________.
(Specify your answer upto two digits after the decimal point.)

Check Answer

Ans (-0.35)-(-0.30)

Q.No:8 JAM-2020

Which one of the following statements is correct?
Given, \(\begin{pmatrix} n \\ m \end{pmatrix}=\frac{n!}{m!(n-m)!)}\)
(A) \(cos \hspace{1mm}n\theta=cos^n \theta -\begin{pmatrix} n \\ 2 \end{pmatrix} cos^{n-2}\theta +sin^2 \theta +\begin{pmatrix} n \\ 4 \end{pmatrix}cos^{n-4} \theta + sin^4 \theta - ......\)
(B) \(sin \hspace{1mm}n\theta=\begin{pmatrix} n \\ 1 \end{pmatrix} cos^{n-1}\theta +sin \theta +\begin{pmatrix} n \\ 3 \end{pmatrix}cos^{n-3} \theta + sin^3 \theta - ......\)
(C) \(cos \hspace{1mm}n\theta=cos^n \theta +\begin{pmatrix} n \\ 2 \end{pmatrix} cos^{n-2}\theta +sin^2 \theta +\begin{pmatrix} n \\ 4 \end{pmatrix}cos^{n-4} \theta + sin^4 \theta + ......\)
(D) \(sin \hspace{1mm}n\theta=cos^n \theta -\begin{pmatrix} n \\ 2 \end{pmatrix} cos^{n-2}\theta +sin^2 \theta +\begin{pmatrix} n \\ 4 \end{pmatrix}cos^{n-4} \theta + sin^4 \theta - ......\)

Check Answer

Option A

Q.No:9 JAM-2020

\(\lim_{x \to 0+} x^x\) is equal to
(A) \(0\)
(B) \(\infty\)
(C) \(e\)
(D) \(1\)

Check Answer

Option D

Q.No:10 JAM-2021

The function \(e^{cos \hspace{0.5mm}x}\) is Taylor expanded about \(x=0\). The coefficient of \(x^2\) is
(A) \(-\frac{1}{2}\)
(B) \(-\frac{e}{2}\)
(C) \(\frac{e}{2}\)
(D) Zero

Check Answer

Option B

Q.No:11 JAM-2021

Let \((x,y)\) denote the coordinates in a rectangular Cartesian coordinate system \(C\). Let \((x' , y')\) denote the coordinates in another coordinate system \(C'\), defined by \[x'=2x+3y\] \[y'=-3x+4y\] The area element in \(C'\), is
(A) \(\frac{1}{17}dx'dy'\)
(B) \(12dx'dy'\)
(C) \(dx'dy'\)
(D) \(x'dx'dy'\)

Check Answer

Option A

Q.No:12 JAM-2022

The integral \(\iint (x^2 + y^2)dxdy\) over the area of a disk of radius 2 in the xy-plane is _______________________ \(\pi\).

Check Answer

Ans 8

Q.No:13 JAM-2023

The plot of the function \(f(x)=||x|-1|\) is
Option A
Image B
Option B
Image C
Option C
Image D
Option D

Check Answer

Option B

Q.No:14 JAM-2023

The Jacobian matrix for transforming from (x,y) to another orthogonal coordinates system (u,v) as shown in the figure is
Image
A) \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1&1\\ 1&-1 \end{pmatrix}\)
B) \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1&1\\ -1&1 \end{pmatrix}\)
C) \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1&-1\\ 1&1 \end{pmatrix}\)
D) \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1&-1\\ 1&-1 \end{pmatrix}\)

Check Answer

Option C

Q.No:15 JAM-2023

The absolute error in the value of sin \(\theta\) if approximated up to two terms in the Taylor’s series for \(\theta=60^\circ\) is______________(rounded off to three decimal places).

Check Answer

Ans 0.009-0.011

Q.No:16 JAM-2023

The coordinate system \( (x, y, z) \) is transformed to the system \( (u, v, w) \), as given by: \[ \begin{aligned} u &= 2x + 3y - z \\ v &= x - 4y + z \\ w &= x + y \end{aligned} \] The Jacobian of the above transformation is _____.

Check Answer

Ans 4

Q.No:17 JAM-2023

In the Taylor expansion of function, \( F(x) = e^x \sin x \), around \( x = 0 \), the coefficient of \( x^5 \) is____________. (Rounded off to three decimal places)

Check Answer

Ans 0.034 to -0.032

search previous next tag category expand menu location phone mail time cart zoom edit close