Vector Calculus JAM

Q.No:1 JAM-2015

Consider a vector field \(\vec{F}=y\hat{i}+xz^3\hat{j}-zy\hat{k}\). Let \(C\) be the circle \(x^2+y^2=4\) on the plane \(z=2\), oriented counter-clockwise. The value of the contour integral \(\oint_c\vec{F}\cdot d\vec{r}\) is
(A) \(28 \pi\)
(B) \(4 \pi\)
(C) \(-4 \pi\)
(D) \(-28 \pi\)

Check Answer

Option A

Q.No:2 JAM-2016

Consider a closed triangular contour traversed in counter-clockwise direction, as shown in the figure below.
Image
The value of the integral, \(\oint \vec{F}\cdot \vec{dl}\) evaluated along this contour, for a vector field, \(\vec{F}=y\hat{e}_x-x\hat{e}_y\) is ____________ .
\((\hat{e}_x, \hat{e}_y\) and \(\hat{e}_y\) are unit vectors in Cartesian−coordinate system.)

Check Answer

Ans -2

Q.No:3 JAM-2016

A hemispherical shell is placed on the xy– plane centered at the origin. For a vector field
\(\vec{E}=(-y \hat{e}_x+x\hat{e}_y)/(x^2+y^2)\) the value of the integral \(\int_s (\vec{\nabla}\times \vec{E})\cdot \hspace{1mm}d\vec{a}\) over the hemispherical surface is __________\(\pi\).
(\(d\vec{a}\) is the elemental surface area. \(\hat{e}_x,\hat{e}_y\) and \(\hat{e}_z\) are unit vectors in Cartesian −coordinate system.)

Check Answer

Ans 2 OR (-2)

Q.No:4 JAM-2016

The tangent line to the curve \(x^2+x y+5=0\) at (1,1) is represented by
(A) \(y=3x-2\)
(B) \(y=-3x+4\)
(C) \(x=3y-2\)
(D) \(x=-3y+4\)

Check Answer

Option MTA

Q.No:5 JAM-2017

The integral of the vector \(\vec{A}(\rho ,\varphi, z)=\frac{40}{\rho} cos \hspace{0.5mm}\varphi \hspace{0.5mm}\hat{\rho}\) (standard notation for cylindrical coordinates is used) over the volume of a cylinder of height \(L\) and radius \(R_0\) is :
(A) \(20\pi R_0L(\hat{i}+\hat{j})\)
(B) 0
(C) \(40\pi R_0L\hat{j}\)
(D) \(40\pi R_0L\hat{i}\)

Check Answer

Option D

Q.No:6 JAM-2017

The volume integral of the function \(f(r,\theta ,\phi)=r^2 \hspace{1mm} cos\theta\) over the region \((0\leq r\leq 2, 0\leq \theta \leq \pi/3\) and \(0\leq \phi \leq 2\pi)\) is ________________.
(Specify your answer to two digits after the decimal point)

Check Answer

Ans 15.0-15.15

Q.No:7 JAM-2018

Let \(f(x,y)=x^3-2y^3\). The curve along which \(\nabla^2 f=0\) is
(A) \(x=\sqrt{2}y\)
(B) \(x=2y\)
(C) \(x=\sqrt{6}y\)
(D) \(x=-y/2\)

Check Answer

Option B

Q.No:8 JAM-2018

A curve is given by \(\vec{r}(t)=t\hat{i}+t^2\hat{j}+t^3\hat{k}\).The unit vector of the tangent to the curve at \(t=1\) is
(A) \(\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}\)
(B) \(\frac{\hat{i}+\hat{j}+2\hat{k}}{\sqrt{6}}\)
(C) \(\frac{\hat{i}+2\hat{j}+2\hat{k}}{3}\)
(D) \(\frac{\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{14}}\)

Check Answer

Option D

Q.No:9 JAM-2019

A unit vector perpendicular to the plane containing \(\vec{A}=\hat{i}+\hat{j}-2\hat{k}\) and \(\vec{B}=2\hat{i}-\hat{j}+\hat{k}\) is
(A) \(\frac{1}{\sqrt{26}}(-\hat{i}+3\hat{j}-4\hat{k})\)
(B) \(\frac{1}{\sqrt{19}}(-\hat{i}+3\hat{j}-3\hat{k})\)
(C) \(\frac{1}{\sqrt{35}}(-\hat{i}+5\hat{j}-3\hat{k})\)
(D) \(\frac{1}{\sqrt{35}}(-\hat{i}-5\hat{j}-3\hat{k})\)

Check Answer

Option D

Q.No:10 JAM-2019

If \(\phi(x,y,z)\) is a scalar function which satisfies the Laplace equation, then the gradient of \(\phi\) is
(A) Solenoidal and irrotational
(B) Solenoidal but not irrotational
(C) Irrotational but not solenoidal
(D) Neither solenoidal nor irrotational

Check Answer

Option A

Q.No:11 JAM-2019

The gradient of a scalar field \(S(x,y,z)\) has the following characteristic(s).
(A) Line integral of a gradient is path-independent
(B) Closed line integral of a gradient is zero
(C) Gradient of S is a measure of the maximum rate of change in the field S
(D) Gradient of S is a scalar quantity

Check Answer

Option A,B,C

Q.No:12 JAM-2020

The volume integral \(\int_V e^{-\left(\frac{r}{R}\right)^2}\vec{\nabla }\cdot \left(\frac{\hat{r}}{r^2}\right)d^3 r\), where \(V\) is the volume of a sphere of radius \(R\) centered at the origin, is equal to
(A) \(4\pi\)
(B) \(0\)
(C) \(\frac{4}{3}\pi R^3\)
(D) \(1\)

Check Answer

Option A

Q.No:13 JAM-2020

The line integral of the vector function \(u(x,y)=2y \hat{i}+x\hat{j}\) along the straight line from (0, 0) to (2, 4) is ______________

Check Answer

Ans 12

Q.No:14 JAM-2020

Consider a vector function \(\vec{u}(\vec{r})\) and two scalar functions \(\psi(\vec{r})\) and \(\Phi(\vec{r})\). The unit vector \(\hat{n}\) normal to the elementary surface \(dS\), \(dV\) is an infinitesimal volume, \(\vec{dl}\) is an infinitesimal line element, and \(\partial/\partial n\) denotes the partial derivative along \(\hat{n}\). Which of the following identities is/are correct?
(A) \(\int_V \vec{\nabla}\cdot \vec{u}dV=\oint_S\vec{u}\cdot \hat{n} dS\), where surface \(S\) bounds the volume \(V\).
(B) \(\int_V [\psi \nabla^2 \Phi -\Phi \nabla^2\psi] dV=\oint_S [\psi \frac{\partial \Phi}{\partial n}-\Phi\frac{\partial \psi}{\partial n}] dS\), where surface \(S\) bounds the volume \(V\).
(C) \(\int_V [\psi \nabla^2 \Phi -\Phi \nabla^2\psi] dV=\oint_S [\psi \frac{\partial \Phi}{\partial n}+\Phi\frac{\partial \psi}{\partial n}] dS\), where surface \(S\) bounds the volume \(V\).
(D) \(\oint_C \vec{u}\cdot \vec{dl}=\iint_S(\vec{\nabla}\times \vec{u})\cdot \hat{n} dS\),where \(C\) is the boundary of surface \(S\).

Check Answer

Option A,B,D

Q.No:15 JAM-2022

Let \((r,\theta)\) denote the polar coordinates of a particle moving in a plane. If \(\hat{r}\) and \(\hat{\theta}\) represent the corresponding unit vectors, then
(A) \[\frac{d\hat{r}}{d\theta} = \hat{\theta}\]
(B) \[\frac{d\hat{r}}{dr} = -\hat{\theta}\]
(C) \[\frac{d\hat{\theta}}{d\theta} = -\hat{r}\]
(D) \[\frac{d\hat{\theta}}{dr} = \hat{r}\]

Check Answer

Option A,C

Q.No:16 JAM-2022

Consider a unit circle \(C\) in the xy plane with center at the origin. The line integral of the vector field, \(\vec{F}(x,y,z)=-2y\hat{x}-3z\hat{y}+x\hat{z}\), taken anticlockwise over \(C\) is ______________ \(\pi\).

Check Answer

Ans 2

Q.No:17 JAM-2023

Which of the following fields has non-zero curl?
A) \(x\hat{i}+y\hat{j}+z\hat{k}\)
B) \((y+z)\hat{i}+(x+z)\hat{j}+(x+y)\hat{k}\)
C) \(y^2\hat{i}+(2xy+z^2)\hat{j}+2yz\hat{k}\)
D) \(xy\hat{i}+2yz\hat{j}+3xz\hat{k}\)

Check Answer

Option D

Q.No:18 JAM-2023

For a given vector \(\vec{F}=-y \hat{i}+z \hat{j}+x^2 \hat{k}\) , the surface integral \(\int_S (\vec{\nabla} \times \vec{F} )\cdot \hat{r}\hspace{0.5mm} dS\) over the surface \(S\) of a hemisphere of radius \(R\) with the centre of the base at the origin is
Image
A) \(\pi R^2\)
B) \(\frac{2\pi R^2}{3}\)
C) \(-\pi R^2\)
D) \(-\frac{2\pi R^2}{3}\)

Check Answer

Option A

Q.No:19 JAM-2023

Unit vector normal to the equipotential surface of \(V(x,y,z)=4x^2+y^2+z\) at (1,2,1) is given by \((a\hat{i}+b\hat{j}+c \hat{k})\). The value of \(|b|\) is _______________________________________ (rounded off to two decimal places).

Check Answer

Ans 0.43 - 0.45

Q.No:20 JAM-2024

The divergence of a 3-dimensional vector \(\frac{\hat{r}}{r^3}\) (\(\hat{r}\) is the unit radial vector) is:
A) \(-\frac{1}{r^4}\)
B) Zero
C) \(\frac{1}{r^3}\)
D) \(-\frac{3}{r^4}\)

Check Answer

Option A

Q.No:21 JAM-2024

The value of the line integral for the vector, \[ \vec{v} = 2\hat{x} + yz^2\hat{y} + (3y + z^2)\hat{z} \] along the closed path \(OABO\) (as shown in the figure) is:
Image
(Path AB is the arc of a circle of unit radius)
A) \(\frac{1}{4}(3\pi - 1)\)
B) \(3\pi - \frac{1}{4}\)
C) \(\frac{3\pi}{4} - 1\)
D) \(3\pi - 1\)

Check Answer

Option A

Q.No:22 JAM-2024

In the \(x\)-\(y\) plane, a vector is given by \[ \vec{F}(x, y) = \frac{-y\hat{x} + x\hat{y}}{x^2 + y^2} . \] The magnitude of the flux of \(\vec{\nabla} \times \vec{F}\), through a circular loop of radius 2, centered at the origin, is:
A) \(\pi\)
B) \(2\pi\)
C) \(4\pi\)
D) 0

Check Answer

Option B

Q.No:23 JAM-2024

Two sides of a triangle \( OAB \) are given by: \[ \vec{OA} = \hat{x} + 2\hat{y} + \hat{z}, \quad \vec{OB} = 2\hat{x} - \hat{y} + 3\hat{z} \] The area of the triangle is _________________(Rounded off to one decimal place)

Check Answer

Ans 4.2-4.4

Q.No:24 JAM-2025

Consider a volume \( V \) enclosed by a closed surface \( S \) having unit surface normal \( \hat{n} \). For \( \vec r = x\hat{i} + y\hat{j} + z\hat{k} \), the value of the surface integral \[ \frac{1}{9} \oint_S \vec r \cdot \hat{n}\, dS \] is
A) \(V\)
B) \(3V\)
C) \(\frac{V}{3}\)
D) \(\frac{V}{9}\)

Check Answer

Option C

Q.No:25 JAM-2025

Which one of the following figures represents the vector field \[ \vec{A} = y\,\hat{i} \] (\(\hat{i}\) is the unit vector along the \(x\)-direction)
Image
A)
Image
B)
Image
C)
Image
D)

Check Answer

Option A

Q.No:26 JAM-2025

Consider a vector \[ \vec{F} = \frac{1}{\pi}\left[-\sin y \,\hat{i} + x(1-\cos y)\,\hat{j}\right]. \] The value of the integral \[ \oint \vec{F}\cdot d\vec{r} \] over the circle \(x^2 + y^2 = 1\), evaluated in the anti-clockwise direction, is ________ (in integer).

Check Answer

Ans 1

23 Comments
Inline Feedbacks
View all comments
Shreya Ambadagatti
Shreya Ambadagatti

Sir can you check the answer. I am getting -2 instead of 2.

DhrubaDas
Reply to  Shreya Ambadagatti
1 year ago

Answer is -2 only

DhrubaDas

Volume integral of cylinder

New-Doc-11-01-2024-18.47
DhrubaDas

Volume integral of given function

New-Doc-11-01-2024-18.47_2
bhaarat_singh

Solution

IMG_20241101_193609
bhaarat_singh

Needs to be discussed

IMG_20241101_193625
23
0
Would love your thoughts, please comment.x
()
x
search previous next tag category expand menu location phone mail time cart zoom edit close